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On the Capacity of the Discrete-Time
Poisson Channel

Amos Lapidoth, Fellow, IEEE, and Stefan M. Moser, Member, IEEE

Abstract—The large-inputs asymptotic capacity of a peak-power
and average-power limited discrete-time Poisson channel is de-
rived using a new firm (nonasymptotic) lower bound and an
asymptotic upper bound. The upper bound is based on the
dual expression for channel capacity and the notion of ca-
pacity-achieving input distributions that escape to infinity. The
lower bound is based on a lower bound on the entropy of a
conditionally Poisson random variable in terms of the differential
entropy of its conditional mean.

Index Terms—Channel capacity, direct detection, high signal-to-
noise ratio (SNR), optical communication, photon, pulse amplitude
modulation, Poisson channel.

I. INTRODUCTION

W E consider a memoryless discrete-time channel whose
output takes value in the set of nonnegative inte-

gers and whose input takes value in the set of nonnegative
real numbers . Conditional on the input , the output
is Poisson distributed with mean , where is some
nonnegative constant, called dark current. Thus, the conditional
channel law is given by

(1)

This channel is often used to model pulse-amplitude modu-
lated (PAM) optical communication with a direct-detection re-
ceiver [1]. Here the input is proportional to the product of the
transmitted light intensity by the pulse duration; the dark cur-
rent similarly models the time-by-intensity product of the
background radiation; and the output models the number of
photons arriving at the receiver during the pulse duration. A
peak-power constraint on the transmitter is accounted for by the
peak-input constraint

(2)
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and an average-power constraint by

(3)

Note that since the input is proportional to the light intensity,
the power constraints apply to the input directly and not to the
square of its magnitude (as is usually the case for electrical
transmission models).

We use to denote the average-to-peak-power ratio

(4)

The case corresponds to the absence of an average-power
constraint, whereas corresponds to a very weak peak-
power constraint.

Although we also provide firm lower bounds on channel ca-
pacity that are valid for all values of the peak and average power,
our main interest in this paper is mostly in the case where both
the allowed average power and the allowed peak power are large.
In fact, we shall compute the asymptotic behavior of channel
capacity as both and tend to infinity with the ratio held
fixed. The low-input regime where the input power is small was
studied in [2] and [3].

No analytic expression for the capacity of the Poisson channel
is known. In [1], Shamai showed that capacity-achieving input
distributions are discrete with a finite number of mass points,
where the number of mass points increases to infinity as the
constraints are relaxed.

In [4], Brady and Verdú considered the case of the Poisson
channel with only an average-power constraint. The following
bounds were derived. Let and tend to infinity with their
ratio held fixed. Given there exists an such
that for all the capacity is bounded by

(5)

(6)

Note that the difference between the upper and lower bound is
unbounded if the dark current is held constant while tends to
infinity.

While the capacity of the discrete-time Poisson channel is
unknown, the capacity of the general continuous-time Poisson
channel where the input signal is not restricted to be PAM has
been derived exactly: the case with a peak-power constraint only
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was solved by Kabanov [5]; the more general situation of peak-
and average-power constraints was treated by Davis [6]; Wyner
[7] found the reliability function of the channel; and Frey [8],
[9] studied the capacity of the Poisson channel under an -norm
constraint.

The capacity of the continuous-time Poisson channel can only
be achieved by input processes that have unbounded bandwidth.
Since this is not realistic, Shamai and Lapidoth [10] investigated
the channel capacity of a Poisson channel with some spectral
constraints, but without restricting the input to use PAM. Note
that even though the penalty incurred by the PAM scheme tends
to zero once the pulse duration is shortened to zero, a PAM
scheme is not optimal if we only limit the minimal pulsewidth,
but not the pulse shape [11].

Besides the Poisson channel model there are a few related
channel models used to describe optical communication. The
free-space optical intensity channel has been investigated in [12,
Ch. 3], [13]–[18]. A variation of this model where the noise
depends on the input has been studied in [12, Ch. 4], [19].

One of the obstacles to an exact expression for the capacity
of the Poisson channel is that the Poisson distribution does not
seem to admit a simple analytic expression. Recently, however,
Martinez [20] derived a new expression for the entropy of a
Poisson random variable based on an integral representation that
can be easily computed numerically. Using this expression he
derived firm lower and upper bounds on the capacity for the
discrete-time Poisson channel with only an average-power con-
straint and no dark current

(7)

(8)

Similarly to the bounds presented here, the derivation of (8) is
based on a duality approach. We would like to emphasize that
(8) is a firm bound valid for all values of whereas we will
present upper bounds that are only valid asymptotically as the
available power tends to infinity. However, in the derivation in
[20] there is a tiny gap in the proof that is shown only numeri-
cally. Nevertheless, Martinez’ bounds are very close and actu-
ally tighter than the bounds presented here (see Fig. 2 in Sec-
tion II).

Here we present results for the more general case where we
enforce both peak- and average-power constraints and assume
a general (nonnegative) dark current . We will derive new
lower bounds on channel capacity that are tighter than previous
bounds. These bounds are based on a new result that proves
that the entropy of the output of a Poisson channel is always
larger than the differential entropy of the channel’s input (see
Section III-B for more details).

We will also introduce an asymptotic upper bound on channel
capacity, where “asymptotic” means that the bound is valid
when the available peak and average power tend to infinity with
their ratio held fixed.1 The upper and lower bounds asymptot-

1In contrast to [4], we regard the dark current as a parameter of the channel
that remains unchanged, i.e., we will always keep � constant.

ically coincide, thus yielding the exact asymptotic behavior of
channel capacity.

The derivation of the upper bounds is based on a technique
introduced in [21] using a dual expression for mutual informa-
tion. We will not state it in its full generality but adapted to the
form needed in this paper. For more details and for a proof we
refer to [21, Sec. V], [12, Ch. 2]

Proposition 1: Assume a channel2 with input alphabet
and output alphabet . Then for an arbitrary

distribution over the channel output alphabet, the channel
capacity is upper-bounded by

(9)

Here, stands for the relative entropy [22, Ch. 2], and
denotes the capacity-achieving input distribution.

Proof: See [21, Sec. V].

The challenge of using (9) lies in a clever choice of the arbi-
trary law that will lead to a good upper bound. Moreover,
note that the bound (9) still contains an expectation over the (un-
known) capacity-achieving input distribution . To handle
this expectation we will need to resort to the concept of input
distributions that escape to infinity as introduced in [21], [23].
This concept will be briefly reviewed in Section IV-B1.

The results of this paper are partially based on [24] and have
appeared in the Ph.D. dissertation [12, Ch. 5].

The remainder of this paper is structured as follows. After
some brief remarks about our notation, we summarize our main
results in the subsequent section. The derivations are then given
in Section III (lower bounds) and Section IV (upper bounds).
These two derivation sections both contain a subsection with
mathematical preliminaries. In particular, in Section III-B we
prove that the entropy of the output of a Poisson channel is
lower-bounded by the differential entropy of its input, in Sec-
tion IV-B1 we review the concept of input distributions that es-
cape to infinity, and in Section IV-B2 we show an adapted ver-
sion of the channel model with continuous channel output. We
will conclude the paper in Section V.

We try to distinguish between those quantities that are random
and those that are constant: for random quantities we use upper-
case letters and for their realizations lower case letters. Scalars
are typically denoted using Greek letters or lower case Roman
letters. However, there will be a few exceptions to these rules.
Since they are widely used in the literature, we will stick with the
common customary shape of the following symbols: stands
for capacity, denotes the entropy of a discrete random
variable, denotes the relative entropy between two prob-
ability measures, and stands for the mutual information
functional. Moreover, we have decided to use the capitals
and to denote probability mass functions (PMF) in case of
discrete random variables or cumulative distribution functions
(CDF) in case of continuous random variables, respectively:

• denotes a distribution on an input of a channel;
• denotes a channel law, i.e., the distribution of the

channel output conditioned on the channel input; and
• denotes a distribution on the channel output.

2There are certain measurability assumptions on the channel that we omit for
simplicity. See [21, Sec. V], [12, Ch. 2].
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In the case when or represents a CDF, the cor-
responding probability density function (PDF) is denoted by

and , respectively.
The symbol denotes average power and stands for peak

power. We shall denote the mean- Poisson distribution by
and the uniform distribution on the interval by

. All rates specified in this paper are in nats per channel
use, and all logarithms are natural logarithms.

Finally, we give the following definition.

Definition 2: Let be a function that tends to zero
as its argument tends to infinity, i.e., for any there exists
a constant such that for all

(10)

Then we write3

(11)

II. MAIN RESULTS

We present upper and lower bounds on the capacity of
channel (1). While the lower bounds are valid for all values
of the power, the upper bounds are valid asymptotically only,
i.e., only in the limit when the average power and the peak
power tend to infinity with their ratio kept fixed. It will turn
out that in this limit the lower and upper bounds coincide, i.e.,
asymptotically we can specify the capacity precisely.

We distinguish between three cases: in the first case, we have
both an average- and a peak-power constraint where the av-
erage-to-peak-power ratio (4) is in the range . In
the second case, , which includes the situation with
only a peak-power constraint . And finally, in the third
case, we look at the situation with only an average-power con-
straint.

We begin with the first case.

Theorem 3: The channel capacity of a Poisson
channel with dark current under a peak-power constraint (2)
and an average-power constraint (3), where the ratio
lies in , is bounded as follows:

(12)

(13)

3Note that by this notation we want to imply that � ��� does not depend on
any other nonconstant variable apart from �.

Here is the solution to

(14)

where the error function is defined as

(15)

with the Gaussian -function

(16)

Note that the function is monotonically

decreasing in and tends to for and to for .
The error term tends to zero as the average power and

the peak power tend to infinity with their ratio held fixed at
. Hence, the asymptotic expansion of channel ca-

pacity is

(17)

where is defined as above to be the solution to (14).

In the second case , we have the following bounds.

Theorem 4: The channel capacity of a Poisson
channel with dark current under a peak-power constraint (2)
and an average-power constraint (3), where the ratio
lies in , is bounded as follows:

(18)

(19)

Here the error term tends to zero as the average power and
the peak power tend to infinity with their ratio held fixed at

. Hence, the asymptotic expansion for the channel
capacity is

(20)
The bounds of Theorem 3 and 4 are depicted in Fig. 1 for

different values of .

Remark 5: For the solution to (14) tends to zero. If in
(13) is chosen to be zero, then (13) coincides with (19). On the
other hand, the lower bound (12) does not converge to (18) for

. The reason for this lies in a detail of the derivations shown

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 15, 2009 at 16:59 from IEEE Xplore.  Restrictions apply.



306 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 1, JANUARY 2009

Fig. 1. This plot depicts the firm lower bounds (12) and (18) (valid for all values of ) and the asymptotic upper bounds (13) and (19) (valid only in the limit
when � �) on the capacity of a Poisson channel under an average- and a peak-power constraint with average-to-peak-power ratio �. For � � (including the
case of only a peak-power constraint � � �) the bounds do not depend on �. The upper bounds do not depend on the dark current. For the lower bounds, the dark
current is assumed to be � � �. The horizontal axis is measured in decibels where �dB� � �� ��	 .

in Section III-D: in the case of only a peak-power constraint we
are able to derive the value of exactly (see (49)),
whereas in the case of a peak- and average-power constraint we
need to bound this value (see (45)).

Remark 6: Note that in Theorem 4 both the lower and the
upper bound do not depend on . Asymptotically, the average-
power constraint becomes inactive for so the trans-
mitter uses less than the available average power.

Finally, for the case with only an average-power constraint
the results are as follows.

Theorem 7: The channel capacity of a Poisson channel
with dark current under an average-power constraint (3) is
bounded as follows:

(21)

(22)

Here the error term tends to zero as . Hence, the
asymptotic expansion for the channel capacity is

(23)

The bounds of Theorem 7 are shown in Fig. 2, together with
the lower and upper bound equations (5) and (6) from [4] and
equations (7) and (8) from [20].

Remark 8: If we keep fixed and let , we get .
For , the solution to (14) tends to which makes
sure that (13) tends to (22). To see this note that for we
can approximate . Then we get from (14) that

(24)

Using this together with

(25)

(26)

we get from (13)

(27)

(28)
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Fig. 2. This plot depicts the firm lower bound (21) (valid for all values of �) and the asymptotic upper bound (22) (valid only in the limit when � � �) on the
capacity of a Poisson channel with average-power constraint ��� � � . The lower bound assumes a dark current � � �. Additionally asymptotic versions of the
lower and upper bound (5) and (6) by Brady and Verdú [4] are plotted where we have assumed � � �� � � �, and � � �, and the firm lower and upper bounds
(7) and (8) by Martinez [20] are shown. Note that the lower bound (7) assumes � � � and is therefore not directly comparable with (21). The horizontal axis is
measured in decibels where � �dB� � �� ��	 � .

Similarly, (12) converges to (21) which can be seen by noting
that for fixed and such that we get

(29)

Hence, Theorem 7 can be seen as corollary to Theorem 3.

III. DERIVATION OF THE LOWER BOUNDS

A. Overview

The key ideas of the derivation of the lower bounds are as
follows. We drop the optimization in the definition of capacity
and simply choose one particular

(30)

This leads to a natural lower bound on capacity.
We would like to choose a distribution that is reason-

ably close to the capacity-achieving input distribution in order to
get a tight lower bound. However, we might have the difficulty

that for such a the evaluation of is intractable.
Note that even for relatively “simple” distributions the dis-
tribution of the corresponding channel output may be difficult
to compute, let alone .

To avoid this problem we lower-bound in terms of
and upper-bound in terms of . This will

lead to a lower bound on that only depends on through
the expression

(31)

We then choose the CDF to maximize this expression
under the given power constraints.

B. Mathematical Preliminaries

The following lemma summarizes some basic properties of a
Poisson distribution.

Lemma 9: Let be Poisson distributed with mean
i.e.,

(32)

Then the following holds:

(33)

(34)

(35)
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and is monotonically nondecreasing for
and monotonically nonincreasing for .

Proof: See, e.g., [25].

Since no simple analytic expression for the entropy of a
Poisson random variable is known, we shall resort to simple
bounds. We begin with an upper bound.

Lemma 10: If is a mean- Poisson random vari-
able, then its entropy is upper-bounded by

(36)

Proof: See [22, Theorem 16.3.3].

In Section IV-B2 we will present a lower bound on
that is valid asymptotically when the mean tends to infinity.

The following proposition is the key in the derivation of the
lower bounds on channel capacity. It demonstrates that if is
conditionally Poisson given a mean , then the en-
tropy can be lower-bounded in terms of the differential
entropy .

Proposition 11: Let be the output of a Poisson channel
with input and dark current according to (1). Assume
that has a finite positive expectation . Then

(37)

(38)

Proof: A proof is given in Appendix A.

C. Proof of the Lower Bound (12)

Using Lemma 10 and Proposition 11 we get

(39)

We choose an input distribution with the following den-
sity:

(40)

where is defined in (15) and where is chosen to achieve
the average-power constraint

(41)

i.e., is the solution to (14). Note that the choice (40) corre-
sponds to the distribution that maximizes (31) under the con-
straints (2) and (3), [22, Ch. 12]. We then have

(42)

and for

(43)

(44)

(45)

The result (12) now follows from (39) with (14), (42), and (45)
where is replaced by .

D. Proof of the Lower Bounds (18) and (21)

The lower bound (18) follows from (39) with the following
choice of an input distribution :

(46)

Note that this choice corresponds to (40) with . It is the dis-
tribution that maximizes (31) under the peak-power constraint
(2) [22, Ch. 12].

We then get

(47)

(48)

(49)

Plugging this into (39) with substituted by yields the
desired result.

As noted in Remark 8, (21) can be seen as limiting case of
(12) for . It could also be derived analogously to (12) with
the choice

(50)

(which is the limiting PDF of (40) for ).

IV. DERIVATION OF THE UPPER BOUNDS

A. Overview

The derivation of the upper bounds is based on the following
key ideas.

• We will assume that the dark current is zero, i.e., .
This is no loss in generality because any upper bound to
the capacity of a Poisson channel without dark current is
also an upper bound to the case with nonzero dark current.
This can be seen as follows: conditional on let

. Then can be written as

(51)
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where and where .
Expanding mutual information twice using the chain rule
we get

(52)

(53)

(54)

(55)

and

(56)

(57)

where the inequality follows from the nonnegativity of mu-
tual information. Hence

(58)

which proves our claim.
Actually, we will show that asymptotically the dark current
has no impact on the capacity.

• One difficulty of the Poisson channel model (1) is that
while we have a continuous input, the output is discrete.
This complicates the application of the technique ex-
plained in Proposition 1 considerably. To circumvent this
problem we slightly change the channel model without
changing its capacity value. The idea is to add some
independent continuous noise to the channel output
that is uniformly distributed between and , i.e.,

(59)

where , independent of and . There is
no loss in information because, given , we can always
recover by applying the “floor”-operation

(60)

where for any denotes the largest integer
smaller than or equal to .

• We will rely on Proposition 1 to derive an upper bound on
the capacity of this new channel model with input and
output , i.e., we will choose an output distribution
and evaluate (9). In various places we will need to resort to
further upper-bounding.

• To evaluate the expectation in (9) over the unknown ca-
pacity-achieving input distribution we will resort
to the concept of input distributions that escape to infinity
as introduced in [21] and further refined in [23]. In short,
even if is unknown, this concept allows us to com-
pute for arbitrary bounded functions in
the asymptotic limit when the available power tends to
infinity. The price we pay is that our upper bounds are only
valid asymptotically for infinite power. For more details,
see Section IV-B1.

• As mentioned before, no strictly analytic expression for the
entropy of a Poisson distributed random variable is known.
We will resort to an asymptotic lower bound on

that is valid as tends to infinity. We then again use

the concept of input distributions that escape to infinity
to show that if the available power tends to infinity also

tends to infinity.

B. Mathematical Preliminaries

In Section IV-B1 we will review the concept of input dis-
tributions that escape to infinity and some of its implications.
Note that the stated results are general and not restricted to the
case of a Poisson channel. Section IV-B2 shows how the Poisson
channel model can be modified to have a continuous output.

1) Input Distributions That Escape to Infinity: In this sub-
section, we will briefly review the notion of input distributions
that escape to infinity as introduced in [21] and further refined
in [23]. Loosely speaking, a sequence of input distributions pa-
rametrized by the allowed cost is said to escape to infinity if it
assigns to any fixed compact set a probability that tends to zero
as the allowed cost tends to infinity.

This notion is important because we can show that for most
channels of interest, the capacity-achieving input distribution
must escape to infinity. In fact, not only the capacity-achieving
input distributions escape to infinity: every sequence of input
distributions that achieves a mutual information having the same
asymptotic growth rate as capacity must escape to infinity.

The statements in this section are valid in general, i.e., they
are not restricted to the Poisson channel. We will only assume
that the input and output alphabets and of some channel
are separable metric spaces, and that for any set the
mapping from to is Borel measurable.4

We then consider a general cost function which
is assumed measurable.

Recall the following definition of a capacity-cost function
with an average and a peak constraint.

Definition 12: Given a channel over the input alphabet
and the output alphabet and given some nonnegative cost

function , we define the capacity-cost function
by

(61)

where the supremum is over all input distributions that
satisfy

(62)

and

(63)

Note that all the following results also hold in the case of only
an average constraint, without limitation on the peak power.
However, for brevity we will omit the explicit statements for
this case.

We will now define the notion of input distributions that es-
cape to infinity. For an intuitive understanding of the following
definition and some of its consequences, it is best to focus on
the example of the Poisson channel where the channel inputs

4In the case of the Poisson channel, the channel output alphabet is discrete.
However, it will be shown in Section IV-B2 that this channel can be easily mod-
ified to have a continuous output without changing its basic properties.
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are nonnegative real numbers and where the cost function
is .

Definition 13: Fixing as ratio of available average
to peak cost

(64)

we say that a family of input distributions

(65)

on parametrized by and escapes to infinity if for any

(66)

Based on this definition, in [23], a general theorem was pre-
sented demonstrating that if the ratio of mutual information to
channel capacity is to approach one, then the input distributions
must escape to infinity.

Proposition 14: Let the capacity–cost function be fi-
nite but unbounded. Let be a function that captures the
asymptotic behavior of the capacity–cost function in
the sense that

(67)

Assume that satisfies the growth condition

(68)

Let be a family of input distributions satisfying
the cost constraints (62) and (63) such that if

(69)

Then escapes to infinity.

Proof: See [23, Sec. VII.C.3].

Note that in [1] it has been shown that the Poisson channel
has a unique capacity-achieving input distribution. We will now
show that this distribution falls into the setting of Proposition
14, i.e., that it escapes to infinity.

Corollary 15: Fix the average-to-peak-power ratio

(70)

Then, the capacity-achieving input distribution
of a Poisson channel (1) with peak- and average-power con-
straints (2) and (3) escapes to infinity. Similarly, for the situ-
ation with only an average-power constraint (3),
escapes to infinity.

Proof: To prove this statement, we will show that the func-
tion

(71)

satisfies both conditions (67) and (68) of Proposition 14. The
latter has already been shown in [23, Remark 9] and is therefore
omitted. The former condition is more tricky. The difficulty lies
in the fact that we need to derive the asymptotic behavior of the
capacity at this early stage of the proof, even though precisely
this asymptotic behavior is our main result of this paper. Note,
however, that for the proof of this corollary it is sufficient to find
the first term in the asymptotic expansion of capacity.

Nevertheless, our proof relies heavily on the lower bounds
derived in Section III, on Proposition 1, and also on Lemmas
17–19 of Section IV-B2. Of course, we made sure that none of
the used results relies in turn on this corollary!

The details are deferred to the very end of this paper in Ap-
pendix F.

Remark 16: If a family of input distributions
escapes to infinity, then for every bounded function that
decays to zero, i.e., that satisfies

(72)

we have

(73)

2) A Poisson Channel With Continuous Output: In the fol-
lowing, we define an adapted Poisson channel model which has
a continuous output. To this end, let be the output of a Poisson
channel with input as given in (1). We define a new random
variable

(74)

where is independent of and uniformly distributed between
and , . Then is continuous with the

probability density function5

(75)

The Poisson channel with continuous output is equivalent to the
Poisson channel as defined in Section I. This is shown in the
following lemma.

Lemma 17: Let the random variables and be defined
as above. Then

(76)

(77)

(78)

Proof: Define . The random variables

(79)

form a Markov chain. Hence, from the data processing in-
equality it follows

(80)

However, since , Part is proven.

5Slightly misusing our notation we will write �� ����� to denote a PDF rather
than a CDF. We believe that it simplifies the reading.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 15, 2009 at 16:59 from IEEE Xplore.  Restrictions apply.



LAPIDOTH AND MOSER: CAPACITY OF THE DISCRETE-TIME POISSON CHANNEL 311

Part follows from the definition of and , respec-
tively, and the fact that, for any

(81)

(82)

(83)

(84)

(85)

Part now follows from and .

We will next derive some more properties of the “continuous
Poisson” distribution (75). Without loss of generality, in the rest
of this section we will restrict ourselves to the case of .

The expected logarithm of a Poisson distributed random vari-
able is unbounded since the random variable takes on the value
zero with a nonzero probability. However, is
well defined. It can be bounded as follows.

Lemma 18: Let be defined as above with PDF given
in (75) and assume that . Fix an arbitrary .
Then

(86)

(87)

(88)

(89)

From this it follows that

(90)

where the term is bounded and tends to zero as tends to
infinity.

Proof: A proof is given in Appendix B.

We next derive a lower bound on the entropy of a Poisson
random variable of sufficiently large mean.

Lemma 19: Let be defined as above with PDF given
in (75) and assume that . Fix an arbitrary .
Then

(91)

(92)

Consequently

(93)

which together with Lemma 10 and Lemma 17 Part implies

(94)

where the term is bounded and tends to zero as tends to
infinity.

Proof: A proof is given in Appendix C.

Finally, we state some other properties of .

Lemma 20: Let be defined as above with PDF given
in (75) and assume that . Let and let be
fixed (in particular, is not allowed to depend on ). Then we
have the following:

(95)

(96)

(97)

Proof: A proof is given in Appendix D.

C. Proof of the Upper Bound (13)

The derivation of (13) is based on (9) with the following
choice of an output distribution :

(98)

where are free parameters that will be specified later,
where

(99)

and where denotes the incomplete gamma function

(100)
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Note that

(101)

is the PDF on that maximizes differential entropy
under the constraints that and are constant. The
choice of an exponential distribution on is moti-
vated by simplicity. It will turn out that asymptotically this “tail”
of our output distribution has no influence on the result.

With this choice we get

(102)

We will now consider each term individually. We start with a
simple bound on

(103)

Next, we bound as follows:

(104)

(105)

(106)

where for the inequality (104) we have assumed that and
, and where we have used that .

For we use the monotonicity of the Poisson distribution
(Lemma 9) and the peak-power constraint to
get

(107)

(108)

(109)

where the last equality follows from (99).
Finally, we bound as follows:

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)
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Here in (118) we have chosen an arbitrary ,
assuming that is large enough such that

(121)

Equation (119) follows again from monotonicity of the Poisson
distribution; and the final inequality (120) follows from
Chernov’s bound [26]

(122)

Next, we upper-bound the moment-generating function of

(123)

(124)

(125)

and choose . This yields

(126)

Note that for , i.e.,

(127)

Plugging all these bounds together with (102) into (9) yields

(128)

Next, we introduce

(129)

and we choose

(130)

where is the solution to (14). Note that such a solution always
exists, is unique, and is nonnegative as long as .

Then, using (90) from Lemma 18 and (94) from Lemma 19
we get

(131)

(132)

(133)

Here, in (132) we upper-bound assuming that is
large enough so that the terms in the brackets are larger than
zero. In (133) we choose , use the relation

(134)

and recall that .
Finally, we recall from Lemma 20 that

(135)

and therefore

(136)

Together with (73) and (14) this yields

(137)

Since is arbitrary, this concludes our proof.
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D. Proof of the Upper Bounds (19) and (22)

The derivation of the asymptotic upper bound (22) could be
done according to the scheme described in Section IV-C with a
different choice of an output distribution6

(138)

where . However, because (22) can be seen as limiting
case of (13) for as explained in Remark 8 we omit the
details of the proof.

The bound (19) could also be derived very similarly. How-
ever, there is an alternative derivation that is less general than the
derivation shown in Section IV-C and implicitly demonstrates
the power of the duality approach (9). We will derive (19) using
this alternative approach. Details can be found in Appendix E.

V. CONCLUSION

New (firm) lower bounds and new (asymptotic) upper bounds
on the capacity of the discrete-time Poisson channel subject
to a peak-power constraint and an average-power constraint
were derived. The gap between the lower bounds and the upper
bounds tends to zero asymptotically as the peak-power and
average-power tend to infinity with their ratio held fixed. The
bounds thus yield the asymptotic expansion of channel capacity
in this regime.

The derivation of the lower bounds relies on a new result that
relates the differential entropy of a Poisson channel’s input to
the entropy of its output (see Proposition 11).

The asymptotic upper bounds were derived in two ways: in
a less elegant version, we lower-bound the conditional entropy

in such a way that we get an expression that depends
solely on the distribution of the channel output. Then we upper-
bound this expression by choosing the maximizing distribution.
In a more powerful approach, we rely on a technique that has
been introduced in [21]: we upper-bound capacity using duality-
based upper bounds on mutual information (see Proposition 1).

In both versions we additionally need to rely on another con-
cept introduced in [21] and [23]: the notion of input distribu-
tions that escape to infinity (see Section IV-B1) that allows
us to compute asymptotic expectations over the unknown ca-
pacity-achieving input distribution.

APPENDIX A
A PROOF OF PROPOSITION 11

Given can be written as , where
and . But

(139)

(140)

(141)

(142)

and we can restrict ourselves to the case where .

6The PDF (138) maximizes the entropy �� �� � under the constraints that � �� �
and ���� �� � are constant.

The proof is based on the data processing inequality of the
relative entropy [27, Ch. 1, Lemma 3.11(ii)].

Let denote an arbitrary CDF on with a certain fi-
nite mean . Let denote the mean- ex-
ponential CDF on . Let be the PMF of when is
conditionally Poisson given and , and let
be the PMF of when is conditionally Poisson given
and . It is straightforward to show that is
a mean- geometric PMF on .

By the data processing theorem we obtain

(143)

where denotes relative entropy. The first inequality in the
proposition’s statement now follows by evaluating the left-hand
side of (143)

(144)

(145)

and evaluating the right-hand side of (143)

(146)

(147)

The second inequality in the proposition’s statement follows
by noting that is monotonically de-
creasing in and approaches zero, as .

APPENDIX B
A PROOF OF LEMMA 18

Everything in the following derivation is conditional on
. Recall that here we assume . We start with the proof

of (89)

(148)

(149)

(150)

For the derivation of (86)–(88) we let

(151)

be a nonnegative continuous random variable with density

(152)
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Then from the definition of in (74) and from Lemma 9 we
have

(153)

(154)

Moreover, using the fact that the probability distribution of a
Poisson random variable is monotonically increasing for all
values below its mean (see Lemma 9), we get for

(155)

(156)

(157)

(158)

(159)

(160)

(161)

Here, from Lemma 9 the inequality (158) holds as long as
, i.e., . The last equality follows from (152).
We now have

(162)

(163)

where is arbitrary. We will now find upper and lower
bounds to each of the three integrals separately.

(164)

(165)

(166)

(167)

(168)

(169)

(170)

(171)

(172)

Here (166) follows from integration by parts; (168) from (161);
and (172) follows from Chebyshev’s inequality [26]

(173)

For the second integral we only use the monotonicity of

(174)

(175)

(176)

(177)

For the last integral term we use integration by parts, similarly
to the first integral:

(178)

(179)

(180)

(181)

Now we distinguish between two cases. In the first case, we
assume that . Then

(182)

and we can use Chebyshev’s inequality (173)

(183)

(184)

(185)

(186)

where in (185) we use once more that .
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For we need to make one additional step

(187)

(188)

(189)

(190)

(191)

where (189) follows again from Chebyshev’s inequality.
The claimed results now follow by combining the corre-

sponding terms.

APPENDIX C
A PROOF OF LEMMA 19

Everything in the following derivation is conditional on
. Recall that here we assume . The bound (92) follows

from Lemma 17 Part and the fact that entropy is nonnegative.
To derive (91) we write

(192)

(193)

(194)

(195)

(196)

where in (195) we use that .
Using Stirling’s bound [28], [29]

(197)

and the Taylor expansion of around

(198)

(199)

(where ), we get

(200)

(201)

(202)

(203)

Here, (200) follows from the lower bound in (197); in (201) we
use the mean of a Poisson distribution, however, noting that the
summation starts at instead of ; then in (202) we
insert (199); and in the final step (203) we again use Lemma 9.

In order to evaluate the remaining sum in (203) we introduce
as shown in (151)–(161) in Appendix B.

(204)

(205)

(206)

(207)
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(208)

(209)

where we introduce an arbitrary and assume that
.

We will now find bounds for each integral separately, simi-
larly to the derivation in Appendix B. We again start with inte-
gration by parts

(210)

(211)

(212)

(213)

(214)

(215)

(216)

Here, (211) follows from (161) using our assumption that
; (212) is due to the monotonicity in of ; in (215) we

use that ; and the last inequality (216) follows from
Chebyshev’s inequality (173).

For the second integral we use the monotonicity of :

(217)

(218)

The third integral we simply lower-bound by zero

(219)

Combined this yields for

(220)

(221)

We then again use (161) under the condition to show
that

(222)

(223)

(224)

Hence

(225)

APPENDIX D
A PROOF OF LEMMA 20

Let . From the definition of we have for
any integer

(226)

(227)

(228)

(229)

(230)
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where for (229) we use

(231)

Therefore, knowing that , we get

(232)

(233)

Hence

(234)

(235)

(236)

(237)

(238)

(239)

where for (239) we use

(240)

(241)

Note that the left-hand sides of (95) and (96) are trivially lower-
bounded by zero. Hence, (95) and (96) follow from (239).

To prove (97) we again assume

(242)

(243)

(244)

(245)

Here, (242) can be argued as follows: for , the func-
tion is monotonically increasing. For large (as
a matter of fact is already sufficiently large), is
small enough such that is monotonically in-
creasing. Therefore, we can use (230). Inequality (244) follows
because for large (again is sufficiently large) we have

. Hence

(246)

(247)

Therefore, (97) can be derived as follows:

(248)

(249)

(250)

(251)

(252)

(253)

Here for (253) we have again used (241). Note that the left-hand
side of (97) is trivially lower-bounded by zero since .
Hence, (97) follows from (253).

APPENDIX E
PROOF OF THE UPPER BOUND (19)

To derive (19) we first note that the capacity of a channel
with an imposed peak- and average-power constraint is upper-
bounded by the capacity of the same channel with a peak-power
constraint only. Hence, any upper bound on the capacity for the
case is implicitly an upper bound on the capacity for all

, i.e., we will derive an upper bound for the case
only.
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The derivation of this upper bound could be done according
to the scheme in Section IV-C with a choice of an output distri-
bution with PDF

(254)

where , and

(255)

However, we will show a different approach here that does not
rely on the duality-based technique of Proposition 1. This ap-
proach is more cumbersome and less general, but clearly illus-
trates the elegance and power of the duality approach.

The new approach uses the trick to “transfer” the problem of
computing the mutual information between input and output of
the channel to a problem that depends only on the distribution
of the channel output. More specifically, we will lower-bound

by an expression containing such that
the mutual information is upper-bounded by an expression that
contains

(256)

and does not directly depend on . We can then find a valid
upper bound by maximizing this expression over all allowed
output distributions. Unfortunately, this maximum is unbounded
as we do not have a peak-power constraint on the output. Hence,
we additionally need to “transfer” the peak-power constraint to
the output side, i.e., we need to show that the contribution of the
terms for are asymptotically negligible. As a matter of
fact, we will only be able to show that the terms for
are negligible for an arbitrary .

Interestingly, the PDF that will achieve the maximum in (256)
is (almost) our choice of (254). Therefore, the derivations
of both approaches are very similar in many aspects. The main
difference—and also the reason why this alternative derivation
is much less powerful—is that in this alternative derivation we
have to transfer the problem to the output side (including the
peak-power constraint!) and then prove that our choice of
is entropy-maximizing. This is in stark contrast to the approach
of Section IV-C, where we may simply specify without
any justification. In the case of only a peak-power constraint
such a justification is possible; in the more complicated scenario
of both a peak- and an average-power constraint such a proof
may be very difficult.

We will now show the details. Again assume . Using
Lemma 17 Part as well as Lemmas 18 and 19 we get

(257)

(258)

(259)

(260)

where (260) follows because for large

(261)

In order to prove that is small we
note that for the output distribution can be bounded
as follows:

(262)

(263)

(264)

Since is small for large , we can use the monotonicity
of for small to bound

(265)

(266)

where (266) follows from (97).
Let

(267)

where as . Let further

for

otherwise.
(268)

Note that is a probability density, i.e., it is nonnegative
and integrates to one. Hence

(269)

(270)
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(271)

(272)

where denotes the set of all distributions over ,
and the set of all distributions over that satisfy
the constraint .

The supremum over is achieved by the distributions [22,
Ch. 11]

(273)

with

(274)

(275)

Hence

(276)

(277)

(278)

(279)

where the supremum in (276) is achieved for , and where
in (278) we have bounded .

Finally, we use (73) and Corollary 15. The result now follows
since is arbitrary.

APPENDIX F
A PROOF OF COROLLARY 15

To prove the claim of this corollary we rely on Proposition 14,
i.e., we need to derive a function that satisfies (67) and
(68).

From the lower bounds in Theorems 3, 4, and 7 (which are
proven in Section III) we know that

(280)

and

(281)

respectively.
We next derive upper bounds on the channel capacity. Note

that

(282)

where and denote the capacity under a peak-
power and average-power constraint, respectively. Hence, it will
be sufficient to show an upper bound for the average-power con-
straint case only. Moreover, as shown in (58), we can further
upper-bound capacity by assuming .

Our derivation is based on Lemma 17 Part and on (9) with
the choice of an output distribution on having the fol-
lowing density:

(283)

For we get

(284)

(285)

where we use that (the additional term
follows from (74)). We fix an arbitrary and continue
by a case distinction. For we use the bounds (86) and
(91) to get

(286)

(287)
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(288)

where in (287) we use and , and where
we use in various places that . Here denotes some
finite terms that only depend on , but not on or .

For we use (87) and (92) to get

(289)

(290)

(291)

where we upper-bound and where we use in various
places that . Again does not depend on or .

Hence, we get

(292)

(293)

(294)

and therefore

(295)

Hence, we have shown that satisfies the con-
ditions of Proposition 14. This proves our claim.
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