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Abstract—The channel capacity of a noncoherent single-input
multiple-output regular fading channel with memory and with
feedback is investigated. The fading process is assumed to be a
general stationary and ergodic random process of finite energy
and finite differential entropy rate. The feedback is assumed to be
noisefree (i.e., it is of infinite capacity), but causal. It is reported
that the asymptotic capacity grows double-logarithmically in the
power and that the second term in the asymptotic expansion, the
fading number, is unchanged with respect to the same channel
without feedback.

I. INTRODUCTION

Noncoherent multiple-antenna fading channel models have

attracted a lot of attention for quite some years because

they realistically describe the omnipresent mobile wireless

communication channels. Here, noncoherent refers to the fun-

damental assumption that transmitter and receiver only have

knowledge about the distribution of the fading process, but

have no direct access to the current fading realization. Hence,

the communication system needs to provide some means of

measuring the current channel state, thereby using part of the

available bandwidth, power, and computational efforts for the

channel state estimation.

This is in stark contrast to the coherent fading models where

it is assumed that the receiver has free and noiseless access

to the current fading realization [1]. It is particularly the latter

assumption of perfect knowledge of the fading realization that

leads to overly optimistic capacity results for coherent channel

models with respect to what can be expected to be seen in

practice.

The noncoherent channel models can be split into different

families. For so-called underspread fading channels, it is

assumed that the fading process is wide-sense stationary and

uncorrelated in the delay, where the product of the delay

and Doppler spread is small (for more details, see [2] and

references therein). The block-fading models assume that for

a certain time, the fading realization remains unchanged before

a new (potentially dependent) value is taken on [3], [4], [5].

In nonregular fading, the fading process is assumed to be

stationary with strong memory that permits a quite precise

prediction of the present fading values from the past [6], [7].

It might be even the case that one can perfectly compute the

current values from the infinite past with a zero prediction

error. Note, however, that due to the noncoherence assumption

and due to the additive noise, the receiver never has access to

the exact past fading values, but only to a noisy observation

of them.

In this paper we investigate the family of noncoherent

regular fading channels. In contrast to nonregular fading,

here it is assumed that the stationary fading process has a

finite differential entropy rate. In [8] it has been shown that

the capacity of multiple-antenna regular fading channels only

grows double-logarithmically in the available power at high

signal-to-noise ratios (SNR). This is much slower than the

common logarithmic growth, e.g., of coherent fading channels,

and it persists independently of the number of antennas used

at transmitter and receiver and independently of the memory

in the fading process.

For a more precise description of this phenomena, [8]

defined the fading number χ as the second term in the high-

SNR asymptotic expansion of the channel capacity:

χ({Hk}) , lim
Es↑∞

{C(Es)− log log Es}. (1)

An analytic expression for its value for general multiple-input

multiple-output fading channels with memory has been derived

in [8], [9].

While the assumption of a noncoherent communication

system is realistic, we also should take into account that many

practical communication systems are bidirectional allowing to

send feedback from the receiver back to the transmitter. Such

a feedback link will help to simplify the necessary coding

scheme and it even has the potential to increase the channel

capacity. In this paper, we investigate the impact of feedback in

the situation of a general single-input multiple-output (SIMO)

regular fading channel with memory. We do not restrict the

exact distribution of the fading process, apart from it being

stationary and ergodic. Concerning the feedback, we assume

the rather unrealistic situation of a feedback link that has

infinite capacity. This will lead to an upper bound on the

capacity in the presence of any practical type of feedback.



The only constraint we make is causality, i.e., the feedback

will arrive at the transmitter delayed by one time-step.

In [10], [11], [12] it has been shown that the potential

improvement in capacity offered by feedback is only very

limited even in the situation of multiple-input multiple-output

(MIMO) regular fading channels. There it was also proven

that for the case of single-input single-output (SISO) regular

fading channels, the asymptotic high-SNR capacity remains

unchanged by any type of causal feedback. This work now

presents a generalization of these results.

The remainder of this paper is structured as follows: in

Section II we will specify the channel model in detail and

give some comments about the used notation. Section III

summarizes the results for the channel model without feedback

including some required definitions and some explanations

about the meaning of the fading number. The main result,

i.e., the exact asymptotic capacity of SIMO fading channels

with noiseless feedback, are then presented in Section IV. We

conclude in Section V with some remarks.

II. CHANNEL MODEL

We consider a communication system as shown in Figure 1.

A message M is transmitted over a SIMO fading channel with

memory where the transmitter has one antenna and the receiver

has nR antennas. The channel output vector Yk ∈ C
nR at time

k is given by

Yk = Hkxk + Zk, (2)

where xk ∈ C denotes the time-k channel input; the random

vector Hk ∈ C
nR denotes the time-k fading vector with nR

components corresponding to the nR antennas at the receiver;

and where the random vector Zk ∈ C
nR models additive noise.

We assume that the additive noise process {Zk} is spatially

and temporally independent and identically distributed (IID),

circularly-symmetric, and complex Gaussian with zero mean

and with variance σ2 > 0:

{Zk} IID ∼ NC

(

0, σ2
InR

)

. (3)

Here, InR
denotes the nR × nR identity matrix.

The fading process {Hk} is statistically independent of

{Zk} and is assumed to be stationary, ergodic, of finite energy

E
[

‖Hk‖
2
]

< ∞, and of finite differential entropy rate

h({Hk}) > −∞. (4)

A random process satisfying this later condition (4) is usually

called regular. Note that we do not make any further assump-

tions about {Hk}, i.e., we do not assume a particular law (like,

e.g., a Gaussian distribution). In particular we do allow for ar-

bitrary dependences between the different components
{

H
(j)
k

}

corresponding to the different antennas (spatial memory) and

over time (temporal memory).

We assume noncoherent communication, i.e., neither trans-

mitter nor receiver know the realization of {Hk}, they only

know its law.

From the receiver to the transmitter we have a noiseless

feedback link (i.e., the link has infinite capacity and allows the

receiver to send everything it knows back to the transmitter).

However, to preserve causality of the system, we require the

feedback to be delayed by one discrete time-step. So the

feedback vector Fk that is available at the transmitter at time

k consists of all past channel output vectors:

Fk = Y
k−1
1 . (5)

The channel input Xk at time k therefore is a deterministic

function of the message M and the feedback Y
k−1
1 . Note that

we assume M to be uniformly distributed.

We consider two types of power constraints: an average-

power constraint and a peak-power constraint. Under the

former we require that for every message m

1

n

n
∑

k=1

E

[

∣

∣Xk

(

m,Yk−1
1

)∣

∣

2
]

≤ Es, (6)

where n denotes the blocklength. Under the peak-power con-

straint we replace (6) with the almost-sure constraint that for

every message m
∣

∣Xk

(

m,Yk−1
1

)
∣

∣

2
≤ Es, a.s., k = 1, . . . , n. (7)

To clarify notation we will use a subscript “FB” whenever

feedback is available, while the subscript “IID” refers to a

situation without memory or feedback. RHS stands for ‘right-

hand side’. Note that log refers to the natural logarithm and

all rates are specified in nats.

III. CAPACITY AND FADING NUMBER WITHOUT

FEEDBACK

It has been shown in [8] that the capacity of general

SIMO regular fading channels under either an average-power

constraint or a peak-power constraint is

C(Es) = log(1 + log(1 + Es)) + χ({Hk}) + o(1), (8)

where o(1) denotes terms that tend to zero as Es tends to

infinity, and where the fading number χ is defined in (1) and

is given by [8]

χ({Hk}) = hλ

(

Ĥ0e
iΘ0

∣

∣

∣

{

Ĥℓe
iΘℓ

}−1

ℓ=−∞

)

− log 2

+ nRE
[

log ‖H0‖
2
]

− h
(

H0

∣

∣H
−1
−∞

)

. (9)

Here, {Θk} is IID ∼ U ((−π, π]) and independent of {Hk},

and Ĥk denotes the unit vector

Ĥk ,
Hk

‖Hk‖
. (10)

Note that since the unit vectors Ĥk only take value on the

unit sphere in C
nR and since the surface of this unit sphere

has zero measure over C
nR , we define a differential entropy-

like quantity hλ(·) that only lives on the surface of the unit

sphere in C
nR :

hλ(V̂) , E
[

−log pλ
V̂
(V̂)

]

, (11)

if the expectation exists. Here pλ
V̂
(v̂) denotes the PDF of the

random unit-vector V̂ with respect to the C
nR -surface measure

λ. For more details we refer to [9, Sec. II].
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Fig. 1. SIMO regular fading channel with nR receive antennas and with noiseless causal feedback.

From (8) it is obvious that the capacity of the fading

channel (2) grows extremely slowly at large power. Indeed,

log(1 + log(1 + Es)) grows so slowly that, for the smallest

values of Es for which o(1) ≈ 0, the (constant!) fading number

χ usually is much larger than log(1 + log(1 + Es)). Hence,

the threshold between the low-power regime and the capacity-

inefficient high-power regime is strongly related to the fading

number: the larger the fading number is, the higher the rate

can be chosen without operating the system in the inefficient

double-logarithmic regime.

Also note that even though the double-logarithmic term on

the RHS of (8) does not depend on {Hk} or, particularly, on

the number of antennas nR, it is still beneficial to have multiple

antennas because the fading number χ does depend strongly

on the fading process and the number of antennas.

From (9) one also sees that in the case of a memoryless

SIMO fading channel, the fading number is given by

χIID(H) = hλ

(

ĤeiΘ
)

−log 2+nRE
[

log ‖H‖2
]

−h(H), (12)

and that therefore the fading number in (9) also can be written

as

χ({Hk}) = χIID(H0) + I
(

H0;H
−1
−∞

)

− I
(

Ĥ0e
iΘ0 ;

{

Ĥℓe
iΘℓ

}−1

ℓ=−∞

)

. (13)

In [8], it has also been shown that for an arbitrary value of

the power Es, the channel capacity can be bounded as follows:

C(Es) ≤ CIID(Es) + I
(

H0;H
−1
−∞

)

, Es ≥ 0. (14)

From (13) we see that this upper bound may not be tight. In

particular, asymptotically for Es → ∞ it is strictly loose.

IV. CAPACITY AND FADING NUMBER WITH FEEDBACK

While it is well-known that feedback has no effect on the

capacity of a memoryless channel, in general feedback does

increase capacity for channels with memory. The reason for

this is that the combination of feedback and memory allows

the transmitter to predict the current channel state and thereby

adapt to it. Unfortunately, for regular fading channels this

increase in capacity due to the feedback turns out to be very

limited.

Theorem 1 (Capacity Increase by Feedback is Bounded by

a Constant): Let a general SIMO fading channel with memory

be defined as in (2) and consider a noiseless causal feedback

link as described in (5) (see Figure 1). Then the channel

capacity under either an average-power constraint (6) or a

peak-power constraint (7) is upper-bounded as follows:

CFB(Es) ≤ CIID(Es) + I
(

H0;H
−1
−∞

)

, Es ≥ 0. (15)

Proof: This theorem has been proven in [10] for the

general case of a MIMO regular fading channel with memory

and noiseless feedback. We omit the details.

We note that the RHS of (15) is identical to the RHS of (14).

Hence the same (alas potentially loose) bound holds both for

the channel capacity with and without feedback. Moreover,

also note that C(Es) trivially is a lower bound to CFB(Es) since

the transmitter can simply ignore the feedback and achieve the

same results as without feedback.

An immediate consequence of Theorem 1 is that CFB(Es)
only grows double-logarithmically in the power at high power

and that therefore there exists a fading number χFB({Hk})
with a definition corresponding to (1). Theorem 1 can then

be applied to χFB({Hk}). However, we will not explicitly

spell out this bound on the fading number, but directly state a

stronger statement.

Theorem 2 (SIMO Fading Number with Memory and

Feedback): Let a general SIMO fading channel with

memory be defined as in (2) and consider a noiseless

causal feedback link as described in (5) (see Figure 1).

Then the asymptotic channel capacity under either an

average-power constraint (6) or a peak-power constraint

(7) is identical to the asymptotic channel capacity for

the channel without feedback:

CFB(Es) = log(1 + log(1 + Es)) + χFB({Hk}) + o(1)
(16)



where the fading number is

χFB({Hk}) = χ({Hk})

= hλ

(

Ĥ0e
iΘ0

∣

∣

∣

{

Ĥℓe
iΘℓ

}−1

ℓ=−∞

)

− log 2

+ nRE
[

log ‖H0‖
2
]

− h
(

H0

∣

∣H
−1
−∞

)

.

(17)

We would like to point out that this result even holds in the

(hypothetical) case when the feedback is improved in the sense

that in addition to the past channel outputs the transmitter

also is informed about the past fading realizations Hk−1
1 . Note

further that since we have assumed the most optimistic form

of causal feedback, any type of realistic feedback will yield

the same result.

Next, we try to give a hand-waving explanation of this

behavior. Since the fading process is assumed to be regular

with a finite differential entropy rate, it is not possible to

perfectly predict the future realizations of the process even

if one is presented with the exact realizations of the infinite

past. Nevertheless, the feedback allows the transmitter to make

an estimate of future realizations. Based on these estimates,

the transmitter can then perform elaborate schemes of optimal

power allocation over time: if the channel state is likely to be

poor, it saves power and uses it once the channel state is likely

to be good again. Unfortunately, due to the double-logarithmic

behavior of capacity, such power allocation has no effect at

all: for any constant β > 0 (β can be chosen arbitrarily large!),

lim
Es↑∞

{log log βEs − log logEs}

= lim
Es↑∞

{log(log β + logEs)− log logEs} (18)

= lim
Es↑∞

{log(log Es)− log log Es} (19)

= 0. (20)

So not only the double-logarithmic growth is left untouched,

but also the second term, i.e., the fading number, remains

unchanged.

With regard to the proof of this result, we firstly remark that

since the channel capacity of the system without feedback triv-

ially is a lower bound on the channel capacity with feedback,

and since the capacity under a peak-power constraint is a lower

bound on the capacity with an average-power constraint, it is

sufficient to derive an upper bound on χFB({Hk}) under the

assumption of the average-power constraint (6) and to show

that it is identical to the fading number without feedback and

under the assumption of a peak-power constraint.

The proof is very lengthy and involved, and we therefore

omit it and refer to a journal version of this paper that is

under preparation. The basic structure follows the proof of

the general fading number of MIMO fading channels with

memory given in [9]. However, there are many details that

need to be adapted and taken care of. Particularly, we have to

consider the following challenges:

• Due to the feedback, the channel input, the fading, and

the additive noise become dependent.

• We cannot rely on the important auxiliary result given in

[9, Th. 3] that shows that the optimal input is stationary.

• We cannot rely on the important auxiliary result given in

[13, Th. 8] that shows that the capacity-achieving input

distribution escapes to infinity.

To handle the first challenge, we rely on the concept of

causal interpretations [14], [15]. This is a tool that allows to

graphically proof the independence of random variables when

conditioned on certain other random variables.

The missing auxiliary result concerning the capacity-achiev-

ing input distribution escaping to infinity can be proven

indirectly inside of the derivation.

The biggest difficulty is caused by the nonstationarity of

the channel input that is inherent to the given context because

the transmitter continuously learns more about the fading

process through the feedback and thereby changes the optimal

distribution of the input.

V. CONCLUSION

We have explained that the asymptotic capacity of gen-

eral SIMO regular fading channels with memory remains

unchanged even if one allows causal noiseless feedback.

This once again shows the extremely unattractive behavior

of regular fading channels at high SNR: besides the double-

logarithmic growth [8] and the very poor performance in a

multiple-user setup (where the maximum sum-rate only can be

achieved if all users apart from one always remain switched off

[16]), we also see that any type of feedback does not increase

capacity in spite of memory in the channel.

We would like to point out that the results presented here

can be extended to the situation where both transmitter and

receiver have access to causal partial side-information Sk

about the fading, where by partial we mean that

lim
n→∞

1

n
I
(

S
n
1 ;H

n
1

)

< ∞. (21)
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