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Abstract

The demand of new wireless communication systems with much higher data rates
that allow, e.g., mobile wireless broadband Internet connections inspires a quick
advance in wireless transmission technology. So far most systems rely on an approach
where the channel state is measured with the help of regularly transmitted training
sequences. The detection of the transmitted data is then done under the assumption
of perfect knowledge of the channel state. This approach will not be sufficient
anymore for very high data rate systems since the loss of bandwidth due to the
training sequences is too large. Therefore, the research interest on joint estimation
and detection schemes has been increased considerably.

Apart from potentially higher data rates a further advantage of such a system is
that it allows for a fair analysis of the theoretical upper limit, the so-called channel
capacity. “Fair” is used here in the sense that the capacity analysis does not ignore
the estimation part of the system, i.e., it takes into account the need of the receiver
to gain some knowledge about the channel state without restricting it to assume
some particular form (particularly, this approach does also include the approach
with training sequences!). The capacity of such a joint estimation and detection
scheme is often also known as non-coherent capacity.

Recent studies investigating the non-coherent capacity of fading channels have
shown very unexpected results. In stark contrast to the capacity with perfect channel
knowledge at the receiver, it has been shown that non-coherent fading channels
become very power-inefficient at high signal-to-noise ratios (SNR) in the sense that
increasing the transmission rate by an additional bit requires squaring the necessary
SNR (or doubling the SNR on a dB-scale)! Here, depending on the channel in use,
“high SNR” typically starts somewhere between 30 to 80 dB. Since transmission in
such a regime will be highly inefficient, it is crucial to avoid a system operating at
such a rate. Hence we need to better understand this behavior and to be able to give
an estimation as to where the inefficient regime starts. One parameter that provides
a good approximation to such a threshold between the power-efficient low-SNR and
the power-inefficient high-SNR regime is the so-called fading number which is defined
as the second term in the high-SNR asymptotic expansion of channel capacity.

The results of this report concern this fading number. We investigate a channel
model based on a flat fading assumption without inter-symbol interference, which is
a typical situation encountered when using a system based on orthogonal frequency
division multiplexing (OFDM) or on orthogonal frequency division multiple-access
(OFDMA). We assume several users at the transmitter side, but only one receiver
(typical setup of a several mobile users communicating with one base-station), where
all users and the receiver might have multiple antennas available. In the most general
setup we do not restrict the fading to have a particular distribution (i.e., it need not
be Gaussian), but we only ask it to be a stationary, ergodic, finite-energy, and regular
random process, possibly with memory both over time and space. For the sake of
simplicity, however, we will introduce further restrictions or simplifying assumptions
on the way.

The results can be grouped into two main chapters: firstly we investigate a
single-user setup where we allow multiple-antennas both at transmitter and receiver.
The fading is assumed to have no temporal memory, but the different antennas
are allowed to have arbitrary correlation. The distribution of the fading is not



restricted to be Gaussian, and not specified apart from the stationarity, ergodicity
and regularity assumptions. In this setup we are able to derive the fading number
precisely, i.e., we are able to specify the exact asymptotic channel capacity in the
limit when the available power tends to infinity, and we can give a good estimation
of the threshold between the efficient low- to medium-SNR regime and the highly
power-inefficient high-SNR regime.

This result is then specialized to the already known cases of single-input multiple-
output (SIMO), multiple-input single-output (MISO), and single-input single-output
(SISO) fading channels, as well as to the situation of Gaussian fading. As a byprod-
uct a new upper bound is derived on gm(·), the expected value of a logarithm of a
non-central chi-square random variable.

In a second chapter we investigate a simple two-user single-antenna setup as-
suming no memory and Gaussian fading. We prove that under the additional con-
straint that the users use circularly symmetric signaling, the sum-rate capacity of
this multiple-access channel equals to the single-user capacity of the user with the
better channel.

Keywords: Channel capacity, fading, fading number, flat fading channel, Gaus-
sian fading, general fading, high signal-to-noise ratio, high SNR, joint estimation
and detection, MAC, memory, MIMO, multiple-access channel, multiple-antenna,
multiple-input multiple-output, multiple-user, non-central chi-square, non-coherent.
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Chapter 1

Introduction

1.1 General Background

The importance of mobile communication systems nowadays needs not to be em-
phasized. Worldwide millions of people rely daily on their mobile phone. While for
the user a mobile phone looks very similar to the old-fashioned wired telephone, the
engineering technique behind it is very much different. The reason for this is that
in a wireless communication system several physical effects occur that change the
behavior of the channel completely compared with wired communication:

• The signal may find many different paths from the sender to the receiver via
various different reflections (buildings, trees, etc.). Therefore the receiver re-
ceives multiple copies of the same signal, however, since each path has different
length and different attenuation, the various copies of the signal will arrive at
different times and with different strength.

• Since the transmitter, the reflectors, and the receiver might be in motion while
transmitting, a physical effect called Doppler effect occurs: the frequency of
the transmitted signal is shifted depending on the relative movement between
receiver, reflectors, and transmitter.

• The signals of several transmitters arrive as a superposition at the receiver,
i.e., the different users act as interferers to each other.

• Since receiver and transmitter are moving and because the environment is
permanently changing (e.g., movements by wind, passing cars, people, etc.),
the different signal paths are constantly changing.

The first two effects lead to a channel that not only adds noise to the transmitted
signal (as this is the case for the traditional wired communication channel), but
also changes the amplitude of the signal (so called fading) and introduces inter-
symbol interference. The latter effect can be combatted using appropriate transmis-
sions schemes and coding like, e.g., an orthogonal frequency division multiplexing
(OFDM) system. Fading is more difficult to deal with. It has a strong impact on the
performance of a system and is at high SNR the dominating source of transmission
errors. Clever coding approaches are needed and one needs to take advantage of
various types of diversity that is available.

To combat multiple-user interference we may use various multiple-access tech-
niques like, e.g., time-division multiple-access (TDMA), frequency-division multiple-
access (FDMA), or code-division multiple-access (CDMA). The former two ap-
proaches separate times slots or frequency bands which are only to be used by one
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user. In the latter all users transmit at the same time and using the same frequency
bandwidth, but using different spreading codes that are orthogonal to each other,
so that the receiver can decode each user separately without having any interference
(apart from a generally slightly higher noise power level), and then, once a particular
user’s sent signal has been decoded, can subtract the interference of this user from
the received signal. Such an approach is also known as successive cancellation. Note
that with respect to the inter-symbol interference an interesting approach is to use
an orthogonal frequency division multiple-access (OFDMA) system that combines
FDMA with OFDM.

In our analysis of these multiple-access fading channels we do not assume any
particular multiple-access scheme, but instead are interested in the maximum pos-
sible sum of the rates of all users that is theoretically possible to transmit using a
(possibly very elaborate) system, i.e., we only consider the sum rate. In the fol-
lowing we use C(snr) exchangeably for the single-user capacity and the maximum
multiple-user sum rate as a function of the total SNR in the channel, i.e., the ratio
of the total available power of all users and the noise power.

The time variant nature of the channel is probably the most difficult aspect
of the channel. Nowadays, usually a wireless communication system uses training
sequences that are regularly transmitted between real data in order to measure the
channel state, and then this knowledge is used to detect the data. This approach has
the advantage that the system design can be split into two parts: one part dealing
with estimating the channel and one part doing the detection under the assumption
that the channel state is perfectly known.

The big disadvantage of the separate estimation and detection is that it is rather
inefficient because bandwidth is lost for the transmission of the training sequences.
Particularly, if the channel is fast changing, the estimates will quickly become poor
and the amount of needed training data will be exuberantly large.

A more promising approach is to design a system that uses the received informa-
tion carrying data at the same time for estimating the channel state. Such a joint
estimation and detection approach will be particularly important for future systems
where the required data rates are considerably larger than the rates provided by
present systems (like, e.g., GSM).

A further advantage of such a joint estimation and detection approach is that it
allows fair and more realistic investigations of physically feasible data rates. To elab-
orate more on this point, we need to briefly review some basic facts from information
theory: in his famous landmark paper “A Mathematical Theory of Communication”
[1] Claude E. Shannon proved that for every communication channel there exists a
maximum rate—denoted capacity—above which one cannot transmit information
reliably, i.e., the probability of making decoding errors tends to one. On the other
hand for every rate below the capacity it is theoretically possible to design a system
such that the error probability is as small as one wishes. Of course, depending on
the aimed probability of error, the system design will be rather complex and one
will encounter possibly very long delays between the start of the transmission until
the signal can be decoded. Particularly the latter is a large obstacle in real systems,
because most communication systems cannot afford large delays. Nevertheless, the
capacity shows the ultimate limit of the communication rate of the available channel
and is therefore fundamental for the understanding of the channel and also for the
judgment of implemented systems regarding their efficiency.

So far the capacity analysis of above mentioned wireless communication channels
were based on the assumption that the receiver has perfect knowledge of the channel
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state due to the training sequences. The capacity was then computed without taking
into account the estimation scheme. Such an approach will definitely lead to an
overly optimistic capacity, because

• even with large amount of training data the channel knowledge will never be
perfect, but only an estimate; and because

• the data rate that is wasted for the training sequences is completely ignored.

The new approach of joint estimation and detection now allows to incorporate
the estimation into the capacity analysis. As a matter of fact, we do not even need
to make any assumption about how a particular estimation scheme might work, but
can directly try to derive the ultimate data rate that the theoretically best system
could achieve. The capacity of such a system is also known as the non-coherent
capacity of fading channels.

Unfortunately, the evaluation of the non-coherent channel capacity involves an
optimization that is very difficult—if not infeasible—to evaluate analytically or nu-
merically.1 Therefore, the question arises how one could get knowledge about the
ultimate limit of reliable communication over fading channels without having to
solve this infeasible expression.

A promising and interesting approach is the study of good upper and lower
bounds to channel capacity. However, one needs to be aware that finding upper
bounds to an expression that itself is a maximization might be rather challenging,
too.

In [2] and extracts thereof published before [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], large progress has been made in tackling this problem: a technique has been
proposed for the derivation of upper bounds on channel capacity.2 It is based on a
dual expression for channel capacity where the maximization (of mutual information)
over distributions on the channel input alphabet is replaced with a minimization (of
average relative entropy) over distributions on the channel output alphabet. Every
choice of an output distribution leads to an upper bound on mutual information.
The chosen output distribution need not correspond to some distribution on the
channel input. With a judicious choice of output distributions one can often derive
tight upper bounds on channel capacity.

Furthermore, in [2] a technique has been proposed for the analysis of the asymp-
totic capacity of general cost-constrained channels. The technique is based on the
observation that—under fairly mild conditions on the channel—every input distri-
bution that achieves a mutual information with the same growth-rate in the cost
constraint as the channel capacity must escape to infinity ; i.e., under such a distri-
bution for some finite cost, the probability of the set of input symbols of lesser cost
tends to zero as the cost constraint tends to infinity. For more details about this
concept see Section 3.1.1.

Both techniques have been proven very successful: they have been successfully
applied to various channel models:

• the free-space optical intensity channel [2], [6], [8];

• an optical intensity channel with input-dependent noise [2];

• the Poisson channel [2], [6], [8];

1As a matter of fact, this optimization is infeasible for most channels of interest.
2The technique works for general channels, not fading channels only.
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• multiple-antenna flat fading channels with memory where the fading process is
assumed to be regular (i.e., of finite entropy rate3) and where the realization
of the fading process is unknown at the transmitter and unknown (or only
partially known) at the receiver [2], [4], [7];

• multiple-antenna flat fading channels with memory where the fading process
may be irregular (i.e., of possibly infinite entropy rate) and where the realiza-
tion of the fading process is unknown (or only partially known) at the receiver
[14], [15], [16], [17], [18];

• fading channels with feedback [19], [2], [5];

• non-coherent fading networks [20], [21];

• a phase noise channel [22], [23].

The bounds that have been derived in these contributions are often very tight. For
various cases the asymptotic capacity in the limit when the available power (signal-
to-noise ratio SNR) tends to infinity has been derived precisely. This is for example
the case for the regular single-input multiple-output (SIMO) fading channel with
memory and for the regular memoryless multiple-input single-output (MISO) fading
channel. In other cases the capacity pre-log (i.e., the ratio of channel capacity to
the logarithm of the SNR in the limit when the SNR tends to infinity) could be
quantified.

Some of these results have been very unexpected. E.g., it has been shown in [2]
that regular fading processes have a capacity that grows only double-logarithmically
in the SNR at high SNR. This means that at high power these channels become ex-
tremely power-inefficient in the sense that for every additional bit capacity the SNR
needs to be squared or, respectively, on a dB-scale the SNR needs to be doubled!
This behavior is independent of the particular law of the fading process, the law of
the noise process, or the number of antennas at the transmitter or receiver. More-
over, the capacity-growth at high SNR is double-logarithmic irrespective whether
there is memory in the fading process or not, and it even remains this slow when
introducing noiseless feedback [19]! This is in stark contrast to the situation of ad-
ditive noise channels and even to the so far known capacity results when assuming
prefect knowledge of the channel state at the receiver: there the capacity grows loga-
rithmically in the power, and the mentioned factors (like, e.g., number of antennas,
memory, or feedback) have a strong (positive) impact on the capacity. For addi-
tive white Gaussian noise (AWGN) channels, e.g., the number of receiver antennas
multiplies the capacity and is therefore very beneficial!

Therefore the question arises whether in the case of non-coherent fading channels
multiple antennas or feedback is useful at all. It turns out that although the asymp-
totic growth rate of capacity is unchanged by these parameters, they still do have
a large influence on the systems: the threshold above which the capacity growth
changes from logarithmic to double-logarithmic is highly dependent on them! As an
example Figure 1.1 shows the capacity of non-coherent single-user Rayleigh fading
channels with various numbers of receive antennas.

3I.e., a process is called regular when the actual fading realization cannot be predicted even if

the infinite past of the process is known.
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Figure 1.1: An upper bound on the capacity of a Rician fading channel as a function
of the output-SNR ρ = (1 + |d|2)snr for different values of the specular component
d. The dotted line depicts the capacity of a Gaussian channel of equal output-SNR
ρ, namely log(1 + ρ).

1.2 The Fading Number

In an attempt to quantify this threshold between efficient low- to medium-SNR
regime and inefficient high-SNR regime more precisely, [7], [2] introduce the fading
number. The fading number is defined as the second term in the high-SNR capacity,
i.e., at high SNR the channel capacity can be expressed as

C(snr) = log log snr + χ+ o(1). (1.1)

Here, o(1) denote terms that tend to zero as the SNR tends to infinity; and χ is the
fading number. For a mathematically more precise definition we refer to Section 2.2.

We would like now to motivate our claim that the fading number is related to
the threshold between the efficient regime where capacity grows like log snr and the
inefficient regime where capacity only grows like log log snr. To that goal we need to
specify how to define this threshold. A very natural definition is as follows: we say
that a wireless communication system operates in the inefficient high-SNR regime,
if its capacity can be well approximated by

C(snr) ≈ log log snr + χ, (1.2)

i.e., the o(1)-terms in (1.1) are small. Note that in the low- to medium-SNR regime
these terms are dominating over the log log snr-term.

Now consider the following situation: assume for the moment that the threshold
snr0 lies somewhere between 30 and 80 dB (it can be shown that this is a reasonable
assumption for many channels that are encountered in practice). In this case, the
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threshold capacity C0 = C(snr0) must be somewhere in the following interval:

log log(30 dB) + χ ≤ C0 ≤ log log(80 dB) + χ, (1.3)

=⇒ χ+ 2.1 nats ≤ C0 ≤ χ+ 3 nats. (1.4)

From this immediately follows the following rule of thumb:

Conjecture 1. A system that operates at rates appreciably above χ + 2 nats is in
the high-SNR regime and therefore extremely power-inefficient.

Hence the fading number can be regarded as quality attribute of the channel: the
larger the fading number is, the higher is the maximum rate at which the channel
can be used without being extremely power-inefficient.

Moreover, it follows from this observation that a system needs to be designed such
as to have a large fading number. However, in order to understand how the fading
number is influenced by the various design parameters like the number of antennas,
feedback, etc., we need to know more about the exact value of χ. So far explicit
expressions for the fading number were given for some single-user fading models, e.g.,
the fading number of single-user single-input single-output (SISO) fading channels
with memory was derived in [7], [2] and the SIMO case with memory was derived
in [4], [3], [2].

For the case of memoryless fading channels, the fading number is known in the
situation of only one antenna at transmitter and receiver (SISO)

χ(H) = log π + E
[
log |H|2

]
− h(H); (1.5)

and in the SIMO case4

χ(H) = hλ

(
ĤeiΘ

)
− h(H) + nRE

[
log ‖H‖2

]
− log 2 (1.6)

(both are special cases from the corresponding situation with memory); and also for
the MISO case [7], [2]

χ
(
HT
)

= sup
x̂

{

log π + E

[

log
∣
∣HTx̂

∣
∣2
]

− h
(
HTx̂

)}

. (1.7)

This fading number is achievable by inputs that can be expressed as the product of
a constant unit vector in C

nT and a circularly symmetric, scalar, complex random
variable of the same law that achieves the memoryless SISO fading number [7].
Hence, the asymptotic capacity of a MISO fading channel is achieved by beam-
forming where the beam-direction is chosen not to maximize the SNR, but the
fading number.

The most general situation of multiple antennas at both transmitter and receiver,
however, has been solved so far only in the special situation of a particular rotational
symmetry of the fading process: if every rotation of the input vector of the channel
can be “undone” by a corresponding rotation of the output vector, and vice-versa,
then the fading number has been shown in [7], [2] to be

χ(H) = log
πnR

Γ(nR)
+ nRE

[
log ‖Hê‖2

]
− h(Hê) (1.8)

where ê ∈ C
nT is an arbitrary constant vector of unit length, and where nR de-

notes the number of receive antennas. Such fading channels are called rotation-
commutative in the generalized sense (for a detailed definition see Section 3.2).

4For a precise definition of the used notation we refer to Section 2.1.
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However, there are still many interesting cases open and unsolved. For example,
the fading number in a multiple-user scenario is completely unknown, even for the
SISO case. It is also interesting to further study the influence of multiple transmitter
antennas on the fading number more in detail.

The remainder of this report is structured as follows: after some remarks about
notation and a detailed mathematical definition of the channel model in the following
chapter, we will firstly present the situation of a general single-user multiple-input
multiple-output (MIMO) fading channel in Chapter 3. There in Section 3.1 we will
derive some very interesting new results, inter alia,

• a lemma that proves that the capacity achieving input distribution in general
must be circularly symmetric; and

• the fading number of general memoryless MIMO fading channels.

For the sake of clarity, some known results that are used in the proofs are discussed
as well, inter alia, the concept of distributions that escape to infinity.

We then specialize these results to the already known fading numbers of SISO,
SIMO, MISO, and rotation-commutative MIMO fading channels in Section 3.2. In
Section 3.3 we investigate the situation of Gaussian fading processes and—as a
byproduct—derive a new non-trivial upper bound on gm(·), the function that de-
scribes the expected value of the logarithm of a non-central chi-square random vari-
able.

In Chapter 4 we next study the simplest case of a multiple-user fading channel:
a two-user Gaussian multiple-access fading channel where each user and the receiver
have only one antenna and where the two fading paths are uncorrelated. We will
show some bounds on the fading number in this scenario and show that if one of
the users uses a circularly symmetric input then the fading number of this MAC
coincides with the fading number of the single-user channel with higher capacity.

We will conclude in Chapter 5.
Some longer proofs can be found in the Appendices.
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Chapter 2

Definitions and Notation

2.1 Notation

We try to use upper-case letters for random quantities and lower-case letters for
their realizations. This rule, however, is broken when dealing with matrices and
some constants. To better differentiate between scalars, vectors, and matrices we
have resorted to using different fonts for the different quantities. Upper-case letters
such as X are used to denote scalar random variables taking value in the reals R or
in the complex plane C. Their realizations are typically written in lower-case, e.g.,
x. For random vectors we use bold face capitals, e.g., X and bold lower-case for
their realizations, e.g., x. Deterministic matrices are denoted by upper-case letters
but of a special font, e.g., H; and random matrices are denoted using another special
upper-case font, e.g., H. If scalars or deterministic scalar functions are not denoted
using Greek or lower-case letters, we use yet another font, e.g., C for capacity or
F(·) for the spectral density function. The energy per symbol is denoted by E and
the signal-to-noise ratio SNR is denoted by snr.

We use the shorthand Hb
a for (Ha, Ha+1, . . . , Hb). For more complicated expres-

sions, such as (HT

ax̂a,H
T

a+1x̂a+1, . . . ,H
T

b x̂b), we use the dummy variable ℓ to clarify
notation: {HT

ℓ x̂ℓ}
b
ℓ=a.

The subscript k is reserved to denote discrete time. Curly brackets are used to
distinguish between a random process and its manifestation at time k: {Xk} is a
discrete random process over time, while Xk is the random variable of this process
at time k.

Hermitian conjugation is denoted by (·)†, and (·)T stands for the transpose (with-
out conjugation) of a matrix or vector. The trace of a matrix is denoted by tr (·).

We use ‖ · ‖ to denote the Euclidean norm of vectors or the Euclidean operator
norm of matrices. That is,

‖x‖ ,

√
√
√
√

m∑

t=1

|x(t)|2, x ∈ C
m (2.1)

‖A‖ , max
‖ŵ‖=1

‖Aŵ‖. (2.2)

Thus, ‖A‖ is the maximum singular value of the matrix A.
The Frobenius norm of matrices is denoted by ‖ · ‖F and is given by the square

root of the sum of the squared magnitudes of the elements of the matrix, i.e.,

‖A‖F ,

√

tr (A†A). (2.3)
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Note that for every matrix A

‖A‖ ≤ ‖A‖F (2.4)

as can be verified by upper-bounding the squared magnitude of each of the compo-
nents of Aŵ using the Cauchy-Schwarz inequality.

We will often split a complex vector v ∈ C
m up into its magnitude ‖v‖ and its

direction
v̂ ,

v

‖v‖
(2.5)

where we reserve this notation exclusively for unit vectors, i.e., throughout this
report every vector carrying a hat, v̂ or V̂, denotes a (deterministic or random,
respectively) vector of unit length

‖v̂‖ = ‖V̂‖ = 1. (2.6)

To be able to work with such direction vectors we shall need a differential entropy-
like quantity for random vectors that take value on the unit sphere in C

m: let λ
denote the area measure on the unit sphere in C

m. If a random vector V̂ takes value
in the unit sphere and has the density pλ

V̂
(v̂) with respect to λ, then we shall let

hλ(V̂) , −E

[

log pλ
V̂

(V̂)
]

(2.7)

if the expectation is defined.
We note that just as ordinary differential entropy is invariant under translation,

so is hλ(V̂) invariant under rotation. That is, if U is a deterministic unitary matrix,
then

hλ(UV̂) = hλ(V̂). (2.8)

Also note that hλ(V̂) is maximized if V̂ is uniformly distributed on the unit sphere,
in which case

hλ(V̂) = log cm, (2.9)

where cm denotes the surface area of the unit sphere in C
m

cm =
2πm

Γ(m)
. (2.10)

The definition (2.7) can be easily extended to conditional entropies: if W is
some random vector, and if conditional on W = w the random vector V̂ has density
pλ
V̂|W

(v̂|w) then we can define

hλ

(
V̂
∣
∣W = w

)
, −E

[

log pλ
V̂|W

(V̂|W)
∣
∣
∣ W = w

]

(2.11)

and we can define hλ

(
V̂
∣
∣W) as the expectation (with respect to W) of hλ

(
V̂
∣
∣W =

w
)
.
Based on these definitions we have the following lemma:

Lemma 2. Let V be a complex random vector taking value in C
µ and of differential

entropy h(V). Let ‖V‖ denote its norm and V̂ denotes its direction as in (2.5).
Then

h(V) = h(‖V‖) + hλ

(
V̂
∣
∣ ‖V‖

)
+ (2µ− 1)E[log ‖V‖] (2.12)

= hλ

(
V̂
)

+ h
(
‖V‖

∣
∣ V̂
)

+ (2µ− 1)E[log ‖V‖] (2.13)

whenever all the quantities in (2.12) and (2.13), respectively, are defined. Here
h(‖V‖) is the differential entropy of ‖V‖ when viewed as a real (scalar) random
variable.
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Proof. Omitted.

We shall write X ∼ NC(µ,K) if X − µ is a circularly symmetric zero-mean
Gaussian random vector of covariance matrix E

[
(X − µ)(X − µ)†

]
= K. By X ∼

U ([a, b]) we denote a random variable that is uniformly distributed on the interval
[a, b].

Throughout this report eiΘ denotes a complex random variable that is uniformly
distributed over the unit circle

eiΘ ∼ Uniform on {z ∈ C : |z| = 1}. (2.14)

When it appears in formulas with other random variables, eiΘ is always assumed to
be independent of these other variables.

All rates specified in this report are in nats per channel use, i.e., log(·) denotes
the natural logarithmic function.

2.2 The Channel Model

We consider a channel with m users each having ni transmit antennas, i = 1, . . . ,m.
The total number of transmit antennas is then

m∑

i=1

ni = nT. (2.15)

We then assume one receiver with nR receive antennas whose time-k output Yk ∈
C

nR is given by
Yk = Hkxk + Zk. (2.16)

Here xk ∈ C
nT denotes the time-k input vector consisting of m subvectors of length

ni for each user; the random matrix Hk ∈ C
nR×nT denotes the time-k fading matrix;

and the random vector Zk ∈ C
nR denotes the time-k additive noise vector.

We assume that the random vectors {Zk} are spatially and temporally white,
zero-mean, circularly symmetric, complex Gaussian random vectors, i.e., {Zk} ∼
IID NC

(
0, σ2

I
)

for some σ2 > 0. Here I denotes the identity matrix.
As for the matrix-valued fading process {Hk} we will not specify a particular

distribution, but shall only assume that it is stationary, ergodic, of a finite-energy
fading gain, i.e.,

E
[
‖Hk‖

2
F

]
<∞ (2.17)

and regular, i.e., its differential entropy rate is finite

h({Hk}) , lim
n↑∞

1

n
h(H1, . . . ,Hn) > −∞. (2.18)

Furthermore, we will restrict ourselves to the memoryless case, i.e., we assume that
{Hk} is IID with respect to k. Since there is no memory in the channel, an IID
input process {Xk} will be sufficient to achieve capacity and we will therefore most
of the time drop the time index k. In this case (2.16) simplifies to

Y = Hx + Z. (2.19)

Note that while we assume that there is no temporal memory in the channel,
we do not restrict the spatial memory, i.e., the different fading components H(i,j) of
the fading matrix H may be dependent.
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We assume that the fading H and the additive noise Z are independent and
of a joint law that does not depend on the channel input x. The different users
are assumed to have access to a common clock (resulting in the common discrete
time k), but are otherwise not allowed to cooperate, i.e., the m subvectors of x are
independent of each other.

As for the input, we consider two different constraints: a peak-power constraint
and an average-power constraint. We use E to denote the maximum allowed total
instantaneous power in the former case, and to denote the allowed total average
power in the latter case. For both cases we set

snr ,
E

σ2
. (2.20)

The total power then still must be split and distributed among all users, however,
since we are only studying the sum rate we are not interested in that part at the
moment. For simplicity we may assume that each user gets the same amount of
power E

m .
The (sum-rate) capacity C(snr) of the channel (2.16) and (2.19), respectively,

is given by

C(snr) = lim
n↑∞

1

n
sup I (Xn

1 ;Yn
1 ) = sup I (X;Y) (2.21)

where the second supremum is over the set of all probability distributions on X for
which the m subvectors are independent and which satisfy the constraints, i.e.,

‖X‖2 ≤ E , almost surely (2.22)

for a peak-power constraint, or

E
[
‖X‖2

]
≤ E (2.23)

for an average-power constraint.
Specializing [7, Theorem 4.2], [2, Theorem 6.10] to memoryless MIMO fading,

we have for m = 1
lim

snr↑∞

{

C(snr) − log log snr

}

<∞. (2.24)

In the case of multiple-users this still holds, since we may think of the m users as
being a large transmitter with nT transmit antennas. The additional constraint that
the users cannot cooperate, i.e., that the m subvectors have to be independent can
then only decrease the capacity.

The fading number χ is now defined as in [7, Definition 4.6], [2, Definition 6.13]
by

χ(H) , lim
snr↑∞

{

C(snr) − log log snr

}

. (2.25)

Prima facie the fading number depends on whether a peak-power constraint (2.22)
or an average-power constraint (2.23) is imposed on the input. However, in the
situation of m = 1 it will turn out that the memoryless MIMO fading number is
identical for both cases.

In the following chapter we will consider a general single-user MIMO fading
channel where the fading process is assumed to be memoryless, but otherwise is
unrestricted.
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Chapter 3

A General Single-User

Memoryless MIMO Fading

Channel

In this chapter we consider the special case of only one user m = 1. Moreover, we
simplify the model to exclude temporal memory. Otherwise we assume the channel
to be general without any particular assumption on the fading distribution, the
number of antennas at transmitter and receiver, or on the correlation between the
different antennas. Hence, we have a channel model that looks like (2.19) with either
an average-power constraint (2.23) or a peak-power constraint (2.22) on the input.

3.1 Results

Before we can state our main result of this chapter, i.e., the fading number of
memoryless MIMO fading channels, we need to introduce three concepts: The first
concerns probability distributions that escape to infinity, the second a technique of
upper-bounding mutual information, and the third concept concerns circular sym-
metry.

3.1.1 Escaping to Infinity

We start with a discussion about the concept of capacity achieving input distribu-
tions that escape to infinity.

A sequence of input distributions parameterized by the allowed cost (in our case
of fading channels the cost is the available power or the SNR, respectively) is said
to escape to infinity if it assigns to every fixed compact set a probability that tends
to zero as the allowed cost tends to infinity. In other words this means that in
the limit—when the allowed cost tends to infinity—such a distribution does not use
finite-cost symbols.

This notion is of importance since the asymptotic capacity of many channels of
interest can only be achieved by input distributions that escape to infinity. As a
matter of fact one can show that to achieve a mutual information of only identical
asymptotic growth rate as the capacity, the input distribution must escape to infin-
ity. Loosely speaking, for many channels it is not favorable to use finite-cost input
symbols whenever the cost constraint is loosened completely.
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In the following we will only state this result specialized to the situation at hand.
For a more general description and for all proofs we refer to [3], [2], [7].

Definition 3. Let {QE}E≥0 be a family of input distributions for the memoryless
fading channel (2.19), where this family is parameterized by the available average
power E such that

EQE

[
‖X‖2

]
≤ E , E ≥ 0. (3.1)

We say that the input distributions {QE}E≥0 escape to infinity if for every E0 > 0

lim
E↑∞

QE

(
‖X‖2 ≤ E0

)
= 0. (3.2)

We now have the following:

Lemma 4. Let the memoryless MIMO fading channel be given as in (2.19) and let
W (·|·) denote the corresponding conditional channel law. Let {QE}E≥0 be a family
of input distributions satisfying the power constraint (3.1) and the condition

lim
E↑∞

I(QE ,W )

log log E
= 1. (3.3)

Then {QE}E≥0 escapes to infinity.

Proof. A proof can be found in [3], [2].

Hence, when computing bounds on the fading number (which is part of the
capacity in the limit when E tends to infinity, see (2.25)) we may assume that

Pr
[
‖X‖2 ≤ E0

]
= 0. (3.4)

3.1.2 An Upper Bound on Channel Capacity

In [7], [2] a new approach of deriving upper bounds to channel capacity has been
introduced. Since capacity is by definition a maximization of mutual information, it
is implicitly difficult to find upper bounds on it. The new proposed technique bases
on a dual expression of mutual information that leads to an expression of capacity
as a minimization instead of a maximization. This way it becomes much easier to
find upper bounds.

Again, here we only state the upper bound in a form needed in the derivation
of Theorem 8, for a more general form, for more mathematical details, and for all
proofs we refer to [7], [2].

Lemma 5. Consider a memoryless MISO fading channel with input S ∈ C
nR and

output T ∈ C such that
T = HTS + Z. (3.5)

Then the mutual information between input and output of the channel is upper-
bounded as follows:

I(S;T ) ≤ −h(T |S) + log π + α log β + log Γ

(

α,
ν

β

)

+ (1 − α)E
[
log
(
|T |2 + ν

)]
+

1

β
E
[
|T |2

]
+
ν

β
(3.6)

where α, β > 0 and ν ≥ 0 are parameters that can be chosen freely, but must not
depend on S.

Proof. A proof can be found in [7], [2].
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3.1.3 Capacity Achieving Input Distributions and Circular Sym-

metry

The final preliminary remark concerns circular symmetry. We say that a random
vector W is circularly symmetric if

W
L

= W · eiΘ (3.7)

where Θ ∼ U ([0, 2π]) is independent of W and where
L

= stands for “equal in law”.
Note that this is not to be confused with isotropically distributed, which means that
a vector has equal probability to point in every direction. Circular symmetry only
concerns the phase of the vector, not its direction.

In case of a random process we make the following definition: we say that a
vector random process {Wk} is circularly symmetric if

{Wk}
L

= {Wke
iΘk}, (3.8)

i.e., the joint distribution defining {Wk} is identical to the joint distribution of a
new process that is given as the product of the original process and a independent
random process {eiΘk} where {Θk} is IID ∼ U ([0, 2π]).

Note an important subtlety of this definition: a random process being circularly
symmetric does not only mean that for every time k the corresponding random
vector is circularly symmetric, but also that from past vectors one cannot gain any
knowledge about the present phase, i.e., the phase is IID.

The following lemma says that for our channel model an optimal input can be
assumed to be circularly symmetric:

Lemma 6. Assume a channel as given in (2.16). Then the capacity achieving input
distribution can be assumed to be circularly symmetric, i.e., the input vectors {Xk}
can be replaced by {Xke

iΘk}, where {Θk} is IID ∼ U ([0, 2π]) and independent of
every other random quantity.

Proof. The proof is given in Appendix A.

Remark 7. Note that the proof of Lemma 6 relies only on the fact that the additive
noise is assumed to be circularly symmetric.

3.1.4 Fading Number of a General Memoryless MIMO Fading Chan-

nel

We are now ready for the main result, i.e., the fading number of a memoryless
MIMO fading channel:
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Theorem 8. Consider a memoryless MIMO fading channel (2.19) where
the random fading matrix H takes value in C

nR×nT and satisfies

h(H) > −∞ (3.9)

and
E
[
‖H‖2

F

]
<∞. (3.10)

Then, irrespective of whether a peak-power constraint (2.22) or an average-
power constraint (2.23) is imposed on the input, the fading number χ(H) is
given by

χ(H) = sup
Q

X̂

{

hλ

(

HX̂

‖HX̂‖

)

+ nRE

[

log ‖HX̂‖2
]

− log 2 − h
(
HX̂

∣
∣ X̂
)

}

(3.11)
where X̂ denotes a random vector of unit length.
Moreover, this fading number is achievable by a random vector X = X̂ · R
where X̂ is distributed according to the distribution that achieves the fading
number in (3.11) and where R is a non-negative random variable such that

logR2 ∼ U ([log log E , log E ]) . (3.12)

Proof. A proof is given in Appendix B.

Note that—even if it is not obvious on a first sight—the optimal choice of Q
X̂

is

circularly symmetric. To see this note that for an arbitrary random unit vector X̂

and for some arbitrary random eiΦ that is independent of H (but possibly might be
dependent on X̂) we have

‖HX̂eiΦ‖
L

= ‖HX̂‖ (3.13)

and

h
(
HX̂

∣
∣ X̂
)

= h
(
HX̂

∣
∣ X̂, eiΦ

)
(3.14)

= h
(
HX̂eiΦ

∣
∣ X̂eiΦ, eiΦ

)
(3.15)

= h
(
HX̂′

∣
∣ X̂′, eiΦ

)
(3.16)

= h
(
HX̂′

∣
∣ X̂′

)
, (3.17)

where “
L

=” stands for “identical in law”, where we have introduced X̂′ = X̂eiΦ, and
where in the last equality we have used the fact that given X̂′, eiΦ and HX̂′ are
independent.

Hence, in (3.11) the only term that depends on the choice of the phase distri-

bution of X̂ is hλ

(
HX̂

‖HX̂‖

)

. This term is maximized for a circularly symmetric X̂ as
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can be seen as follows:

hλ

(

HX̂

‖HX̂‖

)

= I

(

HX̂

‖HX̂‖
; X̂

)

+ hλ

(

HX̂

‖HX̂‖

∣
∣
∣
∣
∣
X̂

)

(3.18)

= I

(

HX̂

‖HX̂‖
; X̂

∣
∣
∣
∣
∣
eiΘ

)

+ hλ

(

HX̂

‖HX̂‖

∣
∣
∣
∣
∣
X̂

)

(3.19)

= I

(

HX̂

‖HX̂‖
eiΘ ; X̂

∣
∣
∣
∣
∣
eiΘ

)

+ hλ

(

HX̂

‖HX̂‖

∣
∣
∣
∣
∣
X̂

)

(3.20)

= hλ

(

HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
eiΘ

)

− hλ

(

HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
X̂, eiΘ

)

+ hλ

(

HX̂

‖HX̂‖

∣
∣
∣
∣
∣
X̂

)

(3.21)

= hλ

(

HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
eiΘ

)

− hλ

(

HX̂

‖HX̂‖

∣
∣
∣
∣
∣
X̂, eiΘ

)

+ hλ

(

HX̂

‖HX̂‖

∣
∣
∣
∣
∣
X̂

)

(3.22)

= hλ

(

HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
eiΘ

)

(3.23)

≤ hλ

(

HX̂

‖HX̂‖
eiΘ

)

. (3.24)

Here the first equality follows from the chain rule; the subsequent equality because
eiΘ is independent of all other random quantities; (3.22) follows from scaling property
of differential entropy by a constant of magnitude 1; and the final inequality from
conditioning that reduces entropy.

Hence, a circularly symmetric input will always achieve a mutual information
that is at least as large as any other input.

The evaluation of (3.11) can be pretty awkward mainly due to the first term, i.e.,
the differential entropy with respect to the surface area measure λ. We therefore
will derive next an upper bound to the fading number that is easier to evaluate.

To that goal firstly note that for an arbitrary constant non-singular nR × nR

matrix A and an arbitrary constant non-singular nT × nT matrix B

χ(AHB) = χ(H) (3.25)

see [7, Lemma 4.7], [2, Lemma 6.14]. Secondly, note that for an arbitrary random
unit vector Ŷ ∈ C

nR

hλ

(
Ŷ
)
≤ log cnR = log

2πnR

Γ(nR)
(3.26)

where cnR denotes the surface area of the unit sphere in C
nR as defined in (2.10) and

where the upper bound is achieved with equality only if Ŷ is uniformly distributed
on the sphere, i.e., Ŷ is isotropically distributed.

Using these two observations we get the following upper bound on the fading
number:
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Corollary 9. The fading number of a memoryless MIMO fading channel as defined
in Theorem 8 can be upper-bounded as follows:

χ(H) ≤ nR log π − log Γ(nR) + inf
A,B

sup
x̂

{
nRE

[
log ‖AHBx̂‖2

]
− h
(
AHBx̂

)}
(3.27)

where the infimum is over all non-singular nR × nR complex matrices A and non-
singular nT × nT complex matrices B.

Proof. From the two observations (3.25) and (3.26) mentioned above we immediately
get from Theorem 8:

χ(H) ≤ inf
A,B

sup
Q

X̂

E
X̂

[

nR log π − log Γ(nR) + nRE

[

log ‖AHBX̂‖2
∣
∣
∣ X̂ = x̂

]

− h
(
AHBX̂

∣
∣ X̂ = x̂

)
]

. (3.28)

The result now follows by noting that (3.27) can always be achieved by choosing Q
X̂

in (3.28) to be the distribution which with probability 1 takes on the value x̂ that
achieves the maximum in (3.27).

This upper bound is possibly tighter than the upper bound given in [7, Lem-
ma 4.14], [2, Lemma 6.16] because of the additional infimum over B.

3.2 Some Known Special Cases

In this section we will briefly show how some already known results of various fading
numbers can be derived as special cases from this new more general result.

We start with the situation of a fading matrix that is rotation-commutative in the
generalized sense, i.e., the fading matrix H is such that for every constant unitary
nT × nT matrix Vt there exists an nR × nR constant unitary matrix Vr such that

VrH
L

= HVt (3.29)

where
L

= stands for “has the same law”; and for every constant unitary nR × nR

matrix Vr there exists a constant unitary nT × nT matrix Vt such that (3.29) holds
[7, Definition 4.37], [2, Definition 6.37].

The property of rotation-commutativity for random matrices is a generalization
of the isotropic distribution of random vectors, i.e., we have the following:

Lemma 10. Let H be rotation-commutative in the generalized sense. Then the
following two statements hold:

• If X̂ ∈ C
nT is an isotropically distributed random vector that is independent

of H, then HX̂ ∈ C
nR is isotropically distributed.

• If ê, ê′ ∈ C
nT are two constant unit vectors, then

‖Hê‖
L

= ‖Hê′‖, ‖ê‖ = ‖ê′‖ = 1 (3.30)

h
(
Hê
)

= h
(
Hê′
)
, ‖ê‖ = ‖ê′‖ = 1. (3.31)

Proof. For a proof see, e.g., [7, Lemma 4.38], [2, Lemma 6.38].

18



From Lemma 10 it immediately follows that in the situation of rotation-com-
mutative fading the only term in the expression of the fading number (3.11) that
depends on Q

X̂
is

hλ

(

HX̂

‖HX̂‖

)

.

This entropy is maximized if HX̂

‖HX̂‖
is uniformly distributed on the surface of the

nR-dimensional complex unit sphere, which can be achieved according to Lemma 10
by the choice of an isotropic distribution for Q

X̂
. Then

hλ

(

HX̂

‖HX̂‖

)

= log cnR (3.32)

where cnR is the surface area of a unit sphere in C
nR , i.e.,

cnR =
2πnR

Γ(nR)
. (3.33)

The fading number then becomes

χ(H) = log
2πnR

Γ(nR)
− log 2 + nRE

[
log ‖Hê‖2

]
− h(Hê) (3.34)

where ê is an arbitrary constant unit vector in C
nT .

In case of a SIMO fading channel, X̂ = eiΦ. Since the optimal distribution in
(3.11) is a circularly symmetric unit random variable, we get X̂ = eiΘ and (3.11)
becomes:

χ(H) = hλ

(
ĤeiΘ

)
+ E

[
log ‖H‖2

]
− log 2 − h(H). (3.35)

In the MISO case note that independently of the distribution of H and X̂, the
distribution of

HTX̂

|HTX̂|
eiΘ

is identical to the distribution of eiΘ . Since the optimal choice of Q
X̂

is circularly
symmetric, we get

hλ

(

HTX̂

|HTX̂|

)

= hλ

(
eiΘ
)

= log 2π (3.36)

and the fading number becomes

χ(HT) = sup
Q

X̂

{

log 2π + E

[

log |HTX̂|2
]

− log 2 − h
(
HTX̂

∣
∣ X̂
)}

(3.37)

= sup
Q

X̂

E
X̂

[

log π + E

[

log |HTx̂|2
∣
∣ X̂ = x̂

]

− h
(
HTx̂

∣
∣ X̂ = x̂

)]

(3.38)

≤ sup
x̂

{
log π + E

[
log |HTx̂|2

]
− h
(
HTx̂

)}
(3.39)

which can be achieved by an input

X̂ = x̂eiΘ (3.40)

where x̂ is the deterministic unit vector that achieves the fading number in (3.39).
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Finally, the SISO case is a combination of the arguments of the SIMO and MISO
case, i.e.,

hλ

(
eiΘ
)

= log 2π. (3.41)

This yields

χ(H) = log 2π + E
[
log |H|2

]
− log 2 − h(H) (3.42)

= log π + E
[
log |H|2

]
− h(H). (3.43)

3.3 Gaussian Fading

The evaluation of the fading number is rather difficult even for the usually simpler
situation of Gaussian fading processes. However, we are able to give the exact value
for some important special cases, and we will give bounds on some other.

Throughout this section we assume that the fading matrix H can be written as

H = D + H̃ (3.44)

where all components of H̃ are independent of each other and zero-mean, unit-
variance Gaussian distributed, and where D denotes a constant line-of-sight matrix.

Note that for some constant unitary nR×nR matrix U and some constant unitary
nT × nT matrix V the law of UH̃V is identical to the law of H̃. Therefore, without
loss of generality, we may restrict ourselves to matrices D that are “diagonal”, i.e.,
for nR ≤ nT,

D =
(
D̃ 0nR×(nT−nR)

)
(3.45)

or, for nR > nT,

D =

(
D̃

0(nR−nT)×nT

)

(3.46)

where D̃ is a min{nR, nT} × min{nR, nT} diagonal matrix with the singular values
of D on the diagonal.

3.3.1 Scalar Line-of-Sight Matrix

We start with a scalar line-of-sight matrix, i.e., we assume D̃ = dI where I denotes
the identity matrix.

Under these assumptions the fading number has been known already for nR =
nT = m, in which case the fading matrix H is rotation-commutative [7], [2], and

χ(H) = mgm

(
|d|2
)
−m− log Γ(m) (3.47)

where gm(·) is a continuous, monotonically increasing, concave function defined as

gm(ξ) ,







log(ξ) − Ei(−ξ) +
m−1∑

j=1

(−1)j

[

e−ξ(j − 1)! −
(m− 1)!

j(m− 1 − j)!

](
1

ξ

)j

,

ξ > 0

ψ(m), ξ = 0

(3.48)
for m ∈ N. Here Ei(−·) denotes the exponential integral function defined as

Ei(−x) , −

∫ ∞

x

e−t

t
dt, x > 0 (3.49)
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and ψ(·) is Euler’s psi function given by

ψ(m) , −γ +

m−1∑

j=1

1

j
(3.50)

with γ ≈ 0.577 denoting Euler’s constant. Note that the function gm(·) describes
the expected value of the logarithm of a non-central chi-square random variable, i.e.,
for some Gaussian random variables {Uj}m

j=1 IID ∼ NC(0, 1) and for some complex
constants {µj}

m
j=1 we have

E



log





m∑

j=1

∣
∣Uj + µj

∣
∣2







 = gm(s2), (3.51)

where

s2 =
m∑

j=1

|µj |
2 (3.52)

(see [24], [7, Lemma 10.1], [2, Lemma A.6] for more details and a proof). For a plot
of gm(·) for various values of m see Figure 3.1.

We now consider the case where nR ≤ nT:

Corollary 11. Assume nR ≤ nT and a Gaussian fading matrix as given in (3.44).
Let the line-of-sight matrix D be given as

D = d
(
InR 0nR×(nT−nR)

)
. (3.53)

Then
χ(H) = nRgnR

(
|d|2
)
− nR − log Γ(nR) (3.54)

where gm(·) is defined in (3.48).

Proof. We write for the unit vector X̂

X̂ =

(
Ξ

Ξ′

)

(3.55)

where Ξ ∈ C
nR and Ξ′ ∈ C

nT−nR . Then

HX̂ = DX̂ + H̃X̂ = dΞ + H̃ (3.56)

where H̃ ∼ NC(0, InR). Hence,

h
(
HX̂

∣
∣ X̂
)

= h
(
H̃
)

= nR log πe; (3.57)

nRE

[

log ‖HX̂‖2
]

= nRgnR

(
|d|2‖Ξ‖2

)
≤ nRgnR

(
|d|2
)
; (3.58)

hλ

(

HX̂

‖HX̂‖

)

≤ log
2πnR

Γ(nR)
. (3.59)

Here, the equality in (3.58) follows from the fact that ‖dΞ + H̃‖2 is non-central
chi-square distributed and from (3.51); the inequality in (3.58) follows from the
monotonicity of gm(·) [24] and is tight if ‖Ξ‖ = 1, i.e., Ξ′ = 0; and the inequality
in (3.59) follows from (2.9) and is tight if Ξ is uniformly distributed on the unit
sphere in C

nR such that HX̂ is isotropically distributed. The result now follows
from Theorem 8.
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The case nR > nT is more difficult since then (3.59) is in general not tight. We
will only state an upper bound:

Proposition 12. Assume nR > nT and a Gaussian fading matrix as given in (3.44).
Let the line-of-sight matrix D be given as

D = d

(
InT

0(nR−nT)×nT

)

. (3.60)

Then

χ(H) ≤ nT log

(

1 +
|d|2

nT

)

+ nR log nR − nR − log Γ(nR). (3.61)

Proof. This result is a special case of Proposition 14 and has been published before
in [7, (128)], [2, (6.224)].

3.3.2 General Line-of-Sight Matrix

Next we assume Gaussian fading as defined in (3.44) with a general line-of-sight
matrix D having singular values d1, . . . , dmin{nR,nT}. Hence, D̃, defined in (3.45) and
(3.46), is given as

D̃ = diag
(
d1, . . . , dmin{nR,nT}

)
(3.62)

where |d1| ≥ |d2| ≥ . . . ≥ |dmin{nR,nT}|.
We again start with the case nR ≤ nT.

Corollary 13. Assume nR ≤ nT and a Gaussian fading matrix as given in (3.44).
Let the line-of-sight matrix D have singular values d1, . . . , dnR, where |d1| ≥ |d2| ≥
. . . ≥ |dnR |. Then

χ(H) ≤ nRgnR

(
‖D‖2

)
− nR − log Γ(nR) (3.63)

where gm(·) is given in (3.48) and where ‖D‖2 = |d1|
2. Furthermore,

χ(H) ≥ nRE



gnR




1

|X̂(1)|2

|d1|2
+ · · · + |X̂(nR)|2

|dnR
|2







− nR − log Γ(nR) (3.64)

≥ nRgnR

(

1
1

|d1|2
+ · · · + 1

|dnR
|2

)

− nR − log Γ(nR) (3.65)

where the expectation is over an isotropically distributed random unit vector X̂ ∈
C

nR.

Proof. A proof is given in Appendix C.

The situation nR > nT is again more complicated. We include this case in a new
upper bound based on (3.27) which holds independently of the particular relation
of nR and nT:

Proposition 14. Assume a Gaussian fading matrix as given in (3.44) and let the
line-of-sight matrix D be general with singular values d1, . . . , dmin{nR,nT}. Then the
fading number is upper-bounded as follows:

χ(H) ≤ min{nR, nT} log
δ2

min{nR, nT}
+ nR lognR − nR − log Γ(nR) (3.66)
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where

δ2 ,
(
|d1|

2 · · · · · |dmin{nR,nT}|
2
)1/ min{nR,nT}

(

1 +
1

|d1|2
+ · · · +

1

|dmin{nR,nT}|2

)

.

(3.67)

Proof. A proof is given in Appendix D.

Note that from Corollary 11 and from Proposition 14 we can derive an interesting
new upper bound on gm(·):

Lemma 15. The function gm(·) as defined in (3.48) can be upper-bounded as follows:

gm(ξ) ≤ log(m+ ξ) (3.68)

ξ ≥ 0, m ∈ N.

This bound is actually quite tight as can be seen from Figure 3.1.

0 20 40 60 80 100 120 140 160 180 200
−1

0

1

2

3

4
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6
gm(ξ) for m = 1, 10, 50, 100

g m
(ξ

)

ξ

log(m+ ξ)
gm(ξ)

Figure 3.1: The function gm(·) and its corresponding upper bound for m =
1, 10, 50, 100.

Proof. Assume nR ≤ nT and d1 = d2 = . . . = dnR = d. Then δ2 in (3.67) is given as
δ2 = |d|2 + nR. Hence, we get from Corollary 11 and from Proposition 14

χ = nRgnR

(
|d|2
)
− nR − log Γ(nR) (3.69)

≤ nR log
|d|2 + nR

nR
+ nR log nR − nR − log Γ(nR) (3.70)

= nR log(|d|2 + nR) − nR − log Γ(nR) (3.71)

which proves the claim.
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Chapter 4

A Two-User SISO Gaussian

Multiple-Access Fading Channel

In this chapter we consider the special case of a memoryless two-user Gaussian
multiple-access fading channel where each transmitter and the receiver have only
one antenna i.e., m = 2, n1 = n2 = 1 so that nT = 2, and nR = 1, and where the
two channel paths suffer from independent fading. The channel output Y ∈ C can
then be written as

Y = H(1)x(1) +H(2)x(2) + Z (4.1)

= d(1)x(1) + H̃(1)x(1) + d(2)x(2) + H̃(2)x(2) + Z, (4.2)

where x(i) ∈ C denotes the input of user i, i = 1, 2; where the random variables H(i)

describe Gaussian fading

H̃(i) + d(i) = H(i) ∼ NC

(

d(i), 1
)

, i = 1, 2, (4.3)

(hence, H̃(i) are zero-mean, circularly symmetric, complex Gaussian random vari-
ables with variance 1) and are assumed to be independent

H(1) ⊥⊥ H(2); (4.4)

and where Z ∼ NC

(
0, σ2

)
denotes additive, zero-mean, circularly symmetric Gaus-

sian noise.
Note that given X(1) = x(1) and X(2) = x(2) the channel output is Gaussian

distributed:
Y ∼ NC

(

d(1)x(1) + d(2)x(2),
∣
∣x(1)

∣
∣2 +

∣
∣x(2)

∣
∣2 + σ2

)

. (4.5)

4.1 Preliminaries

It is important to note that our multiple-access channel (MAC) model can be con-
sidered as a special case of a single-user multiple-input single-output (MISO) fading
channel with two antennas at the transmitter where, as additional constraint, co-
operation between the transmitter antennas is prohibited. Hence, any known result
on the MISO Gaussian fading channel are implicitly upper bounds to the situation
considered here. In particular we know that the high-SNR sum-rate capacity can be
upper-bounded as follows:

I
(
X(1), X(2);Y

)
≤ CMISO(E) = log log

E

σ2
+ χMISO + o(1), (4.6)
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where o(1) denotes terms that tend to zero as E tends to infinity and where χMISO

denotes the fading number of memoryless MISO Gaussian fading:

χMISO = log ‖d‖2 − Ei
(
−‖d‖2

)
− 1 (4.7)

= log
(∣
∣d(1)

∣
∣2 +

∣
∣d(2)

∣
∣2
)

− Ei
(

−
∣
∣d(1)

∣
∣2 +

∣
∣d(2)

∣
∣2
)

− 1. (4.8)

Here Ei(−·) is the exponential integral function defined as

Ei(−x) , −

∫ ∞

x

e−t

t
dt, x > 0. (4.9)

On the other hand can we always lower-bound the sum rate of the MAC by
switching off one of the users:

I
(
X(1), X(2);Y

)

≥ max
i

Ci,SISO(E) (4.10)

= max
i=1,2

{

log log
E

σ2
+ χi,SISO + o(1)

}

(4.11)

= log log
E

σ2
+ max

i=1,2
χi,SISO + o(1) (4.12)

= log log
E

σ2
+ max

i=1,2

{

log
(∣
∣d(i)

∣
∣2
)

− Ei
(

−
∣
∣d(i)

∣
∣2
)

− 1
}

+ o(1) (4.13)

= log log
E

σ2
+ log

(
d2

max

)
− Ei

(
−d2

max

)
− 1 + o(1), (4.14)

where the last equality follows from the monotonicity of log(·) − Ei(−·) and where

dmax , max
{∣
∣d(1)

∣
∣,
∣
∣d(2)

∣
∣

}

. (4.15)

Hence, we can write

CMAC(E) = log log
E

σ2
+ log

(
d2

MAC

)
− Ei

(
−d2

MAC

)
− 1 + o(1) (4.16)

where we have introduced dMAC to be a non-negative real number satisfying

max
{∣
∣d(1)

∣
∣,
∣
∣d(2)

∣
∣

}

≤ dMAC ≤

√
∣
∣d(1)

∣
∣2 +

∣
∣d(2)

∣
∣2. (4.17)

Hence, the fading number of Gaussian MAC is defined and given as

χMAC , lim
E→∞

{

CMAC(E) − log

(

1 + log

(

1 +
E

σ2

))}

(4.18)

= log
(
d2

MAC

)
− Ei

(
−d2

MAC

)
− 1, (4.19)

for some dMAC that still needs to be determined. In the following we will study
dMAC.

4.2 An Upper Bound on the Sum-Rate Capacity and

Fading Number

As in Chapter 3 we will rely on the new technique of deriving upper bounds on
channel capacity that has been introduced in [7], [2]. Since a MAC is basically a
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MISO channel with the additional constraint of non-cooperation, we can use the
results from Lemma 5:

I
(
1X(1), X(2);Y

)

≤ −h
(
Y
∣
∣X(1), X(2)

)
+ log π + α log β + log Γ

(

α,
ν

β

)

+ (1 − α)E
[
log
(
|Y |2 + ν

)]
+

1

β
E
[
|Y |2

]
+
ν

β
(4.20)

≤ −h
(
Y
∣
∣X(1), X(2)

)
+ log π + α log β + log Γ

(

α,
ν

β

)

+ (1 − α)E
[
log |Y |2

]
+ ǫν +

1

β
E
[
|Y |2

]
+
ν

β
(4.21)

= −E

[

log πe
(∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2

)]

+ log π + α log β + log Γ

(

α,
ν

β

)

+ (1 − α)E
[

E

[

log |Y |2
∣
∣
∣X(1) = x(1), X(2) = x(2)

]]

+ ǫν

+
1

β
E

[∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2 +

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2
]

+
ν

β
(4.22)

= −E

[

log
(∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2

)]

− 1 + α log β + log Γ

(

α,
ν

β

)

+ (1 − α)E
[

log
(∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2

)]

+ (1 − α)E

[

log

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2

− Ei

(

−

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2

)]

+ ǫν +
1

β
E

[∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2 +

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2
]

+
ν

β
(4.23)

= −1 + E

[

log

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2

− Ei

(

−

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2

)]

+ α

(

log β − E

[

log
(∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2

)]

− E

[

log

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2

− Ei

(

−

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2

)])

+ log Γ

(

α,
ν

β

)

+ ǫν

+
1

β
E

[∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2 +

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2
]

+
ν

β
. (4.24)

Here the first inequality follows from Lemma 5; in the subsequent equality we assume
0 < α < 1 such that 1 − α > 0 and define

ǫν , sup
x(1),x(2)

{

E

[

log
(
|Y |2 + ν

)
∣
∣
∣X(1) = x(1), X(2) = x(2)

]

− E

[

log |Y |2
∣
∣
∣X(1) = x(1), X(2) = x(2)

]}

, (4.25)

such that

(1 − α)E
[
log
(
|Y |2 + ν

)]

= (1 − α)E
[
log |Y |2

]
+ (1 − α)

(
E
[
log
(
|Y |2 + ν

)]
− E

[
log |Y |2

])
(4.26)
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≤ (1 − α)E
[
log |Y |2

]

+ (1 − α) sup
x(1),x(2)

{

E

[

log
(
|Y |2 + ν

)
∣
∣
∣X(1) = x(1), X(2) = x(2)

]

− E

[

log |Y |2
∣
∣
∣X(1) = x(1), X(2) = x(2)

]}

(4.27)

= (1 − α)E
[
log |Y |2

]
+ (1 − α)ǫν (4.28)

≤ (1 − α)E
[
log |Y |2

]
+ ǫν ; (4.29)

in the subsequent equality we use the fact that given X(1) = x(1) and X(2) = x(2) the
channel output is Gaussian distributed according to (4.5); in the subsequent equality
we evaluate the expected logarithm of a non-central chi-square random variable as
derived in [24], [7, Lemma 10.1], [2, Lemma A.6] and also discussed in (3.51); and
the last equality follows from simple algebraic rearrangements.

Next we bound the following expressions:

E

[

log
(∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2

)]

≥ log σ2; (4.30)

E

[

log

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2

− Ei

(

−

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2

)]

≥ −γ; (4.31)

and

E

[∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2 +

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2
]

≤ E + σ2 + E

[∣
∣d(1)X(1)

∣
∣2 +

∣
∣d(2)X(2)

∣
∣2
]

(4.32)

≤ E + σ2 + max
{∣
∣d(1)

∣
∣2,
∣
∣d(1)

∣
∣2
}

E

[∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2
]

(4.33)

≤ E + σ2 + max
{∣
∣d(1)

∣
∣2,
∣
∣d(1)

∣
∣2
}

E (4.34)

,
(
1 + d2

max

)
E + σ2. (4.35)

Here, (4.30) follows from dropping some non-negative terms; (4.31) follows because
log ξ − Ei(−ξ) ≥ −γ where γ ≈ 0.57 denotes Euler’s constant; and to derive (4.35)
we used the Schwarz inequality and the fact that the input needs to satisfy the
average-power constraint.

Moreover, we bound

E

[

log

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2

− Ei

(

−

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2

)]

≤ E

[

log

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

− Ei

(

−

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

)]

, (4.36)

which follows from the monotonicity of log ξ − Ei(−ξ).
Together with (4.24) we then get

I
(
X(1), X(2);Y

)

≤ −1 + E

[

log

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

− Ei

(

−

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

)]

+ ǫν

+ α
(
log β − log σ2 + γ

)
+ log Γ

(

α,
ν

β

)

+
1

β

((
1 + d2

max

)
E + σ2

)

+
ν

β
(4.37)
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≤ sup
Q

X(1) ·QX(2)

{

log E

[∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

]

− Ei

(

−E

[∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

])

− 1

}

+ ǫν

+ α
(
log β − log σ2 + γ

)
+ log Γ

(

α,
ν

β

)

+
1

β

((
1 + d2

max

)
E + σ2

)

+
ν

β
. (4.38)

Here the last inequality follows from Jensen’s inequality, the fact that log ξ−Ei(−ξ) is
concave, and by taking the supremum over all distributions that satisfy the average-
power constraint (2.23).

We will now make the following choices of the free parameters α and β:

α , α(E) =
ν

log
((

1 + d2
max

)
E + σ2

) (4.39)

β , β(E) =
1

α(E)
eν/α(E) (4.40)

for some constant ν ≥ 0, which leads to the following asymptotic behavior:

lim
E↑∞

{

log Γ

(

α,
ν

β

)

− log
1

α

}

= log
(
1 − e−ν

)
; (4.41)

lim
E↑∞

α
(

log β − log σ2 + γ
)

= ν; (4.42)

lim
E↑∞

{
1

β

((
1 + d2

max

)
E + σ2

)

+
ν

β

}

= 0; (4.43)

lim
E↑∞

{

log
1

α
− log

(

1 + log

(

1 +
E

σ2

))}

= − log ν. (4.44)

(Compare with [7, Appendix VII], [2, Sec. B.5.9].)
Hence, we have derived the following upper bound on the fading number of a

Gaussian MAC:

χMAC = lim
E→∞

{

C(E) − log

(

1 + log

(

1 +
E

σ2

))}

(4.45)

≤ lim
E→∞

{

sup
Q

X(1) ·QX(2)

{

log E

[∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

]

− Ei

(

−E

[∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

])

− 1

}

+ ǫν + α
(
log β − log σ2 + γ

)
+ log Γ

(

α,
ν

β

)

+
1

β

((
1 + d2

max

)
E + σ2

)

+
ν

β
− log

(

1 + log

(

1 +
E

σ2

))}

(4.46)

≤ lim
E→∞

sup
Q

X(1) ·QX(2)

{

log E

[∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

]

− Ei

(

−E

[∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

])

− 1

}

+ ǫν + ν + log
(
1 − e−ν

)
− log ν, (4.47)
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where the supremum is over distributions QX(1) ·QX(2) that satisfy the average-power
constraint.

By letting ν tend to zero which makes sure that ǫν → 0 as can be seen from
(4.25) we finally get the following bound:

Theorem 16. The fading number of a two-user Gaussian fading MAC as defined
in (4.5) is upper-bounded as follows:

χMAC ≤ lim
E→∞

sup
Q

X(1) ·QX(2)

{

log E

[∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

]

− Ei

(

−E

[∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

])

− 1

}

. (4.48)

The problem is therefore reduced to find a bound on the expression

E

[∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

]

. (4.49)

First note the following:

sup
Q

X(1) ·QX(2)

E

[∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

]

≤ sup
x(1),x(2)

∣
∣d(1)x(1) + d(2)x(2)

∣
∣2

∣
∣x(1)

∣
∣2 +

∣
∣x(2)

∣
∣2

(4.50)

= sup
x

|dTx|2

‖x‖2
(4.51)

= sup
x

x
(
d*dT

)
x†

‖x‖2
(4.52)

= λmax

(
d*dT

)
(4.53)

where λmax

(
d*dT

)
denotes the maximum eigenvalue of the matrix d*dT. Here the

last equality follows from the Rayleigh-Ritz Theorem [25, Theorem 4.2.2]. The
maximum eigenvalue of d*dT can be easily computed to be ‖d‖2. Hence,

sup
Q

X(1) ·QX(2)

E

[∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

]

≤
∣
∣d(1)

∣
∣2 +

∣
∣d(2)

∣
∣2. (4.54)

Note that this maximum can be achieved if cooperation is allowed: choose X as

X =
d

‖d‖
· X̃ (4.55)

where X̃ is a circularly symmetric input with a magnitude such that

log |X̃| ∼ U ([log log E , log E ]) (4.56)

(see the corresponding results of MISO fading, [2], [7]).
This agrees with (4.16) and (4.17).

4.3 Loose Bound On MAC Fading Number

Unfortunately, the upper bound (4.54) is also achievable for independentX(1) ⊥⊥ X(2):

29



Lemma 17. Let X(1) ⊥⊥ X(2) and assume E
[
X(1)

]
= E

[
X(2)

]
= 0. Moreover, as-

sume
E

[∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2
]

≤ E . (4.57)

Then

lim
E→∞

sup
Q

X(1) ·QX(2)

E

[∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

]

=
∣
∣d(1)

∣
∣2 +

∣
∣d(2)

∣
∣2. (4.58)

Proof. The right-hand side of (4.58) is for sure an upper bound on the left-hand side
because of (4.54). We now show that it is also a lower bound. To that goal choose
the following distributions on the inputs:

X(i) =







−d(i)* with probability p(i) , E
E+2|d(i)|2

,

d(i)*p(i)

1−p(i) with probability 1 − p(i),
(4.59)

for i = 1, 2. This choice is zero-mean and of variance E
2 and leads to

lim
E→∞

E

[∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

]

=
∣
∣d(1)

∣
∣2 +

∣
∣d(2)

∣
∣2. (4.60)

For more details see Appendix E.

However, note that the choice of QX(1) · QX(2) given in the proof of Lemma 17
is performing very poorly when considering the total mutual information instead of
only expression (4.49). Indeed, one can show that the upper bound (4.54) is loose:

Theorem 18. The fading number of a two-user Gaussian fading MAC is strictly
smaller than the corresponding MISO Gaussian fading:

χMAC < log
(∣
∣d(1)

∣
∣2 +

∣
∣d(2)

∣
∣2
)

− Ei
(

−
∣
∣d(1)

∣
∣2 −

∣
∣d(2)

∣
∣2
)

− 1. (4.61)

Proof. For simplicity, firstly consider the case where d(1) = d(2) = d:

∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

= |d|2
∣
∣X(1) +X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + σ2

(4.62)

= |d|2
∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2 + 2

∣
∣X(1)

∣
∣ ·
∣
∣X(2)

∣
∣ cos(Φ1 − Φ2)

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

(4.63)

= |d|2
(

1 +
2|X| cos Φ

1 + |X|2

)

(4.64)

where we have introduced Φ1 and Φ2 to denote the phase of X(1) and X(2), respec-
tively, and |X| =

∣
∣X(1)

∣
∣/
∣
∣X(2)

∣
∣ and Φ = Φ1 − Φ2. Note that the maximum of 2|d|2

can only be achieved if |X| = 1 and Φ = 0. But since the two users are independent,
this is only possible if X(1) and X(2) become almost deterministic.

The same argument also holds if one considers the general case of general d(1),
d(2).
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Next, let’s investigate the situation of almost deterministic inputs: Let ξ =
(ξ, ξ)T ∈ C

2 be a deterministic input vector, fix δ > 0 and define

Vδ ,

{

x :
|x(1)|

|ξ|
∈ (1 − δ, 1 + δ),

|x(2)|

|ξ|
∈ (1 − δ, 1 + δ),

(∠x(1) − ∠ξ) ∈ (−δ, δ), (∠x(2) − ∠ξ) ∈ (−δ, δ)

}

. (4.65)

Let p , Pr(Vδ). Hence, to achieve the MISO fading number in the MAC situation
we need that p→ 1 as E → ∞.

We will now show that in this case capacity actually tends to zero. To that goal
we will use the dual-based technique of finding upper bounds on capacity introduced
in [7] and [2]. We choose as an output distribution

R(y) = pW (y|ξ) + (1 − p)RΓ(y) (4.66)

where RΓ(·) denotes the output distribution that has been used to derive the bound
given in Lemma 5, and where W (·|·) denotes the conditional channel law. Then, for
x ∈ Vδ

D
(
W (·|x)

∥
∥R(·)

)

=

∫

W (y|x) log
W (y|x)

pW (y|ξ) + (1 − p)RΓ(y)
dy (4.67)

≤

∫

W (y|x) log
W (y|x)

pW (y|ξ)
dy (4.68)

= − log p−H(Y |X = x) −

∫

W (y|x) log
1

π(‖ξ‖2 + σ2)
e
−

|y−d
†ξ|2

‖ξ‖2+σ2 dy (4.69)

= − log p− log
‖x‖2 + σ2

‖ξ‖2 + σ2
+

‖x‖2 + σ2

‖ξ‖2 + σ2
− 1 +

|d†x − d†ξ|2

‖ξ‖2 + σ2
. (4.70)

For x /∈ Vδ,

D
(
W (·|x)

∥
∥R(·)

)

=

∫

W (y|x) log
W (y|x)

pW (y|ξ) + (1 − p)RΓ(y)
dy (4.71)

≤

∫

W (y|x) log
W (y|x)

(1 − p)RΓ(y)
dy (4.72)

≤ − log(1 − p) − h
(
Y
∣
∣X = x

)
+ log π + α log β

+ log Γ

(

α,
ν

β

)

+ (1 − α)E
[
log
(
|Y |2 + ν

) ∣
∣ X = x

]

+
1

β
E
[
|Y |2

∣
∣ X = x

]
+
ν

β
(4.73)

analogously to Lemma 5.
Hence, we have

I(X;Y ) ≤ E
[
D
(
W (·|X)

∥
∥R(·)

)]
(4.74)

= pE
[
D
(
W (·|X)

∥
∥R(·)

) ∣
∣ X ∈ Vδ

]

+ (1 − p)E
[
D
(
W (·|X)

∥
∥R(·)

) ∣
∣ X /∈ Vδ

]
(4.75)
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≤ −p log p− pE

[

log
‖X‖2 + σ2

‖ξ‖2 + σ2

∣
∣
∣
∣
X ∈ Vδ

]

+ pE

[
‖X‖2 + σ2

‖ξ‖2 + σ2

∣
∣
∣
∣
X ∈ Vδ

]

− p+ pE

[
|d†x − d†ξ|2

‖ξ‖2 + σ2

∣
∣
∣
∣
X ∈ Vδ

]

− (1 − p) log(1 − p)

− (1 − p)h
(
Y
∣
∣X,X /∈ Vδ

)
+ (1 − p) log π + (1 − p)α log β

+ (1 − p) log Γ

(

α,
ν

β

)

+ (1 − p)(1 − α)E
[
log
(
|Y |2 + ν

) ∣
∣ X /∈ Vδ

]

+ (1 − p)
1

β
E
[
|Y |2

∣
∣ X /∈ Vδ

]
+ (1 − p)

ν

β
. (4.76)

To simplify this bound note that every x ∈ Vδ can be easily upper- or lower-bounded
by means of δ. Moreover, note

h
(
Y
∣
∣X,X /∈ Vδ

)
= log π + 1 + E

[
log
(
‖X‖2 + σ2

) ∣
∣ X /∈ Vδ

]
, (4.77)

E
[
|Y |2

∣
∣ X /∈ Vδ

]
= E

[
‖X‖2 + σ2

∣
∣ X /∈ Vδ

]
≤

E

(1 − p)
+ σ2, (4.78)

E
[
log |Y |2

∣
∣ X /∈ Vδ

]
= E

[
log
(
‖X‖2 + σ2

) ∣
∣ X /∈ Vδ

]

+ E

[

log
|d†X|2

‖X‖2 + σ2
− Ei

(

−
|d†X|2

‖X‖2 + σ2

) ∣
∣
∣
∣
X /∈ Vδ

]

(4.79)

≤ E
[
log
(
‖X‖2 + σ2

) ∣
∣ X /∈ Vδ

]
+ log ‖d‖2 − Ei

(
−‖d‖2

)
, (4.80)

E
[
log |Y |2

∣
∣ X /∈ Vδ

]
= E

[
log
(
‖X‖2 + σ2

) ∣
∣ X /∈ Vδ

]

+ E

[

log
|d†X|2

‖X‖2 + σ2
− Ei

(

−
|d†X|2

‖X‖2 + σ2

) ∣
∣
∣
∣
X /∈ Vδ

]

(4.81)

≥ log σ2 − γ. (4.82)

Finally, we make the following choice of the free parameters:

ν = 0, (4.83)

β =
1

α

(
E

1 − p
+ σ2

)

, (4.84)

α =
1

log E
, (4.85)

and note that log Γ(α) ≥ 0 for all α > 0. Then we get

I(X;Y ) ≤ −p log p− p log
2(1 − δ)2|ξ|2 + σ2

2|ξ|2 + σ2
+ p

2(1 + δ)2|ξ|2 + σ2

2|ξ|2 + σ2

− p+ p
|d(1)((1 + δ)ξeiδ − ξ) + d(2)((1 + δ)ξeiδ − ξ)|2

2|ξ|2 + σ2

− (1 − p) log(1 − p) − (1 − p) − (1 − p)α logα

+ (1 − p)α log

(
E

1 − p
+ σ2

)

+ log Γ(α)

+ (1 − p)
(
log ‖d‖2 − Ei

(
−‖d‖2

) )
− (1 − p)α(log σ2 − γ)

+ (1 − p)α (4.86)

and

χMAC = lim
E→∞

{

C(E) − log

(

1 +

(

1 +
E

σ2

))}

(4.87)

≤ − log
2(1 − δ)2|ξ|2 + σ2

2|ξ|2 + σ2
+

2(1 + δ)2|ξ|2 + σ2

2|ξ|2 + σ2
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− 1 +
|d(1)((1 + δ)ξeiδ − ξ) + d(2)((1 + δ)ξeiδ − ξ)|2

2|ξ|2 + σ2
(4.88)

→ 0 as δ → 0. (4.89)

Here we have used that log Γ(α) + logα→ 0 as α→ 0.

4.4 Circular Symmetry

Unfortunately, we have not yet been able to prove that the optimal input for both
users is circularly symmetric. The problem lies in the fact that the users need to be
independent of each other, i.e., the proof of Lemma 6 breaks down since there each
antenna has the same circularly symmetric random phase.

However, we are able to prove the following proposition:

Proposition 19. Assume that at least one user uses an input with

E
[
eiΦ
∣
∣ |X|

]
= 0, (4.90)

where Φ denotes the phase and |X| the magnitude of the input. Then the Gaussian
MAC fading number is given by

dMAC = max
{∣
∣d(1)

∣
∣,
∣
∣d(2)

∣
∣

}

, (4.91)

i.e., the high-SNR capacity of a MAC corresponds to the high-SNR capacity of the
better of the two channels if the other user is switched off.

In particular this holds if at least one user uses an input that is circularly sym-
metric.

Proof. Note that (4.90) implies the following:

E

[

X(1)
(
X(2)

)
*

∣
∣
∣

∣
∣X(1)

∣
∣,
∣
∣X(2)

∣
∣

]

= E

[∣
∣X(1)

∣
∣ · eiΦ

(1)
·
∣
∣X(2)

∣
∣ · e−Φ(2)

∣
∣
∣

∣
∣X(1)

∣
∣,
∣
∣X(2)

∣
∣

]

(4.92)

=
∣
∣X(1)

∣
∣ ·
∣
∣X(2)

∣
∣ · E

[

eiΦ
(1)
e−Φ(2)

∣
∣
∣

∣
∣X(1)

∣
∣,
∣
∣X(2)

∣
∣

]

(4.93)

=
∣
∣X(1)

∣
∣ ·
∣
∣X(2)

∣
∣ · E

[

eiΦ
(1)
∣
∣
∣

∣
∣X(1)

∣
∣

]

· E
[

e−Φ(2)
∣
∣
∣

∣
∣X(2)

∣
∣

]

(4.94)

= 0. (4.95)

Hence,

E

[∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

]

= E

[

E

[ ∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

∣
∣
∣
∣
∣

∣
∣X(1)

∣
∣,
∣
∣X(2)

∣
∣

]]

(4.96)

= E




E

[∣
∣d(1)X(1) + d(2)X(2)

∣
∣2
∣
∣
∣

∣
∣X(1)

∣
∣,
∣
∣X(2)

∣
∣

]

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2



 (4.97)

= E

[

1
∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

(
∣
∣d(1)

∣
∣2
∣
∣X(1)

∣
∣2 +

∣
∣d(2)

∣
∣2
∣
∣X(2)

∣
∣2

+ d(1)
(
d(2)
)
*
E

[

X(1)
(
X(2)

)
*

∣
∣
∣

∣
∣X(1)

∣
∣,
∣
∣X(2)

∣
∣

]
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+
(
d(1)
)
*d(2)

E

[(
X(1)

)
*X(2)

∣
∣
∣

∣
∣X(1)

∣
∣,
∣
∣X(2)

∣
∣

])
]

(4.98)

= E

[∣
∣d(1)

∣
∣2
∣
∣X(1)

∣
∣2 +

∣
∣d(2)

∣
∣2
∣
∣X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

]

(4.99)

≤ sup
|x(1)|,|x(2)|

∣
∣d(1)

∣
∣2
∣
∣x(1)

∣
∣2 +

∣
∣d(2)

∣
∣2
∣
∣x(2)

∣
∣2

∣
∣x(1)

∣
∣2 +

∣
∣x(2)

∣
∣2

(4.100)

= sup
t≥0

∣
∣d(1)

∣
∣2 +

∣
∣d(2)

∣
∣2t

1 + t
(4.101)

= max
{∣
∣d(1)

∣
∣2,
∣
∣d(2)

∣
∣2
}

, (4.102)

where the last equality follows from the fact that

∣
∣d(1)

∣
∣
2
+
∣
∣d(2)

∣
∣
2
t

1+t is monotonically

increasing or decreasing depending on whether
∣
∣d(1)

∣
∣ ≥

∣
∣d(2)

∣
∣ or not.

The theorem now follows from the fact that this upper bound can be achieved
by a simple scheme where the user with the worse channel is switched off.

To show that if one user uses a circularly symmetric input, then the other user
also should use a circularly symmetric input, we rely on the corresponding result from
the single-user situation: in a single-user situation the optimal input is circularly
symmetric as shown in Lemma 6. Hence, if the user with the worse channel uses a
circularly symmetric input, then the optimum can only be achieved if the magnitude
of this user is deterministically equal to zero and the other user then needs to use a
circularly symmetric input in order to achieve the single-user capacity.
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Chapter 5

Discussion & Conclusions

The topic under study in this project is the theoretical upper limit on the rate of
reliable transmission that can be achieved over a wireless, mobile communication
system. This upper limit is characterized by the channel capacity in the case of a
single-user setup or the capacity region in the situation of multiple users. We assume
an OFDM system such that for our analysis we can neglect inter-symbol interference,
but only need to deal with the problem of fading. We define a discrete-time version
of a corresponding channel model where we try to make as few assumptions as
possible in order to keep the results as general as possible. Hence, we do not make
any particular assumption about the distribution of the fading process (i.e., not
necessarily Gaussian!), allow in general for an arbitrary number of antennas both
at transmitter and receiver, and consider multiple users. We also allow memory,
both over time and space, i.e., the different fading coefficients of different antennas
and at different times might be dependent. The only restriction applied is the so-
called regularity assumption. To explain this assumption slightly imprecisely in an
engineering way we might say that we ask the fading process to be fully random
in the sense that even with the knowledge of all past fading realizations and of all
fading realizations of neighboring antennas one cannot predict the actual value of
the fading precisely. The prediction error might be very small once one knows the
past and the neighboring fading values, but it is still non-zero. Considering the fact
that in reality no measurement is absolutely perfect this assumption seems to be
realistic.

We concentrate our study to the high- and highest-SNR regime where the avail-
able power becomes very large. In particular we are interested in the fading number
χ:

χ , lim
snr→∞

{

C(snr) − log
(
1 + log

(
1 + snr

))}

, (5.1)

i.e., in the second term of the high-SNR asymptotic expansion of capacity. Note
that the capacity at high SNR can be written as

C(snr) = log(1 + log(1 + snr)) + χ+ o(1), (5.2)

where o(1) denotes terms that tend to zero as the SNR tends to infinity.
We motivate our interest in the high-SNR regime and the fading number by

arguing that the knowledge of the high-SNR capacity behavior has a very strong
impact on practical considerations when designing such mobile communication sys-
tems, even if one does never operate a system at such high SNR levels. The argument
is based on the observation that the high-SNR behavior (5.2) is extremely poor be-
cause the capacity grows only double-logarithmically in the SNR. in other words
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this means that in the regime where the approximation

C(snr) ≈ log(1 + log(1 + snr)) + χ (5.3)

is valid, any additional bit of capacity requires a squaring of the SNR, or, on a
dB-scale, doubling the dB-value of the SNR. This behavior must be avoided in any
practical communication system, i.e., a system must be designed to operate at lower
SNRs. Hence, the question arises to where the threshold lies between this highly
inefficient high-SNR regime and the normal low- to medium-SNR regime.

To answer this question the fading number can give an interesting answer: pulling
ourselves by our bootstraps, let us consider for the moment that (5.3) starts to be
valid for an SNR somewhere in the range1 of 30 to 80 dB. In spite of this rather large
range the function log(1+ log(1+snr)) will vary only between 2 and 3 nats. Hence,
the capacity will vary between 2 + χ and 3 + χ nats. Therefore, we can conclude
that once the capacity is appreciably above χ + 2 nats, the approximation (5.3) is
likely to be valid. Therefore, the fading number can be seen as an indicator of the
maximum rate at which power efficient communication is possible on the channel.

Note that while the term log(1+log(1+snr)) remains always the same indepen-
dent on the details of the channel model, the value of the fading number strongly
depends on the specific assumptions of the channel model like fading distribution,
number of antennas at transmitter and receiver, number of users, type of memory
in the channel, etc.

For a further discussion about the practical relevance of the fading number we
also refer to [16] and [15].

In the process of the study we further restrict the channel model to some spe-
cial cases, however, always keeping in mind the ultimate goal of an analysis of the
unrestricted case. We here basically study two special cases:

• a single-user memoryless MIMO fading channel, and

• a two-user memoryless SISO Gaussian multiple-access fading channel.

5.1 A Single-User Memoryless MIMO Fading Channel

In the former we are able to derive the fading number of a MIMO fading channel of
general fading law including spatial, but without temporal memory. Since the fad-
ing number is the second term after the double-logarithmic term of the high-SNR
expansion of channel capacity, this means that we precisely specify the behavior of
the channel capacity asymptotically when the power grows to infinity. We further
show that the asymptotic capacity can be achieved by an input that consists of the
product of two independent random quantities: a circularly symmetric random unit
vector (the direction) and a non-negative (i.e., real) random variable (the magni-
tude). The distribution of the random direction is chosen such as to maximize the
fading number and therefore depends on the particular law of the fading process.
The distribution of the magnitude is chosen such that

logR2 ∼ U ([log log E , log E ]) . (5.4)

This is the well-known choice that also achieves the fading number in the SISO and
SIMO case and is also used in the MISO case where it is multiplied by a constant
beam-direction x̂. All these special cases follow nicely from this new result.

1This assumption is reasonable for many channels encountered in practice.
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The derivation of this result is based on three main techniques or observations:
firstly, we know that the capacity achieving input distribution must escape to infin-
ity which means that at high SNR no finite energy input symbols should be used
anymore. Secondly, we use the dual-based approach of deriving upper bounds to
channel capacity as firstly described in [26] without application and as firstly ap-
plied in [7] and [2]. Finally we prove that in general the capacity achieving input
distribution must be circularly symmetric. The proof only relies on the fact that
the additive noise is circularly symmetric so that this result holds in a most general
setting. To understand this result note that a circularly symmetric input can pack
more information into the phase than any other phase distribution. Since the ad-
ditive noise does not favor any direction there is no need to protect some direction
more than others and therefore it is optimal to pack as much information into the
phase as possible.

Note that this result has been actually known for a long time, but it seems that
part of the literature has not really been aware of it. It is mentioned for example in
[7, Section IV.D.6].

We then derive some new results for the important special situation of Gaussian
fading. For the case of a scalar line-of-sight matrix (3.53) assuming at least as many
transmit as receive antennas nR ≤ nT we have been able to state the fading number
precisely:

χ = nRgnR

(
|d|2
)
− nR − log Γ(nR), (5.5)

where gm(·) denotes the expected value of a non-central chi-square random variable
[24]. We see that the asymptotic capacity only depends on the number of receive
antennas and is growing proportionally to nR log |d|2.

For a general line-of-sight matrix we derived an upper bound (3.66) that grows
like min{nR, nT} log δ2 where δ2 is a certain kind of average (3.67) of all singular
values of the line-of-sight matrix. For nR ≤ nT we also specify some lower bounds.

As a byproduct based on these results, we have been able to give a new upper
bound on the function gm(·).

We very much hope that the result derived here will be helpful in our attempts
of deriving the fading number for the MIMO case including temporal memory.

5.2 A Two-User Memoryless SISO Gaussian Multiple-

Access Fading Channel

In the second case of a two-user memoryless SISO Gaussian multiple-access fading
channel, we have not yet been able to derive the asymptotic capacity precisely.
The difficulty lies in the fact that the inputs of the two users must be independent
(in contrast to the MISO situation where the two antennas at the transmitter can
cooperate). We derive some upper and lower bounds to the fading number which
relate the MAC situation to the situation of MISO fading with two antennas at the
transmitter. Basically the MAC is a case between the pessimistic situation where
the sum-rate capacity is identical to the single-user capacity of the user with the best
channel (which means that the other user cannot transmit at all when the highest
total sum rate shall be achieved) and the optimistic case where the same sum rate
can be achieved as if cooperation between the users were allowed.

We show that the latter optimistic case cannot be achieved, i.e., the MAC fading
number is strictly smaller than the corresponding MISO fading number. Moreover,
we show that when at least one user uses a circular symmetric input, then the fading
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number is reduced to the pessimistic situation where the user with the worse channel
must be switched off. It then follows from the results of single-user channels that
the optimum input must be circularly symmetric.

To derive the fading number precisely, some more future work is required. One
promising approach is the attempt of proving that a circular symmetric input is also
optimal in the MAC situation, which would then give the fading number based on
the above described result.

5.3 Outlook

As mentioned there are two questions that follow immediately from the results pre-
sented here and that we would like to solve:

• What is the exact expression of the fading number of a general single-user
MIMO fading channel with memory?

• Is a circularly symmetric input optimal in the situation of a two-user SISO
Gaussian multiple-access fading channel? If not, what is the exact expression
of the fading number in this situation?

Both questions are rather difficult: in the first problem we probably will need to
prove that a stationary channel model has a capacity achieving input distribution
that is stationary. Note that so far the fading number of channels with memory is
only known in cases with only one antenna at the transmitter. In that situation it
turned out that IID inputs are sufficient in order to achieve the capacity at high SNR.
We suspect that this might not be the case anymore once we have several antennas
at the transmitter. The reason for this is that the channel state estimation in case
of only one transmit antenna is relatively simple: the receiver decodes the input
and then divides the received vector by this decoded value. There is no need for
additional structure in the input. However, if there are several transmitter antennas
one cannot get all fading values directly from the knowledge of the received vector
and the decoded transmitted vector. Hence, additional structure in the input might
be needed to get a better estimate.

The main problem in the second question lies in the fact that the two users
must be independent. This constraints makes many techniques and approaches that
have been successful in the single-user situation useless. At the moment the most
promising path seems to be an attempt in proving that circular symmetry is the
optimal choice for both users.
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Appendix A

Proof of Lemma 6

Assume that {Θk} are IID ∼ U ([0, 2π]), independent of every other random quantity.
Then

1

n
I
(
Xn

1 ;Yn
1

)

=
1

n
I
(
Xn

1 ;Yn
1

∣
∣ {eiΘℓ}n

ℓ=1

)
(A.1)

=
1

n
I
(
{Xℓe

iΘℓ}n
ℓ=1; {Yℓe

iΘℓ}n
ℓ=1

∣
∣ {eiΘℓ}n

ℓ=1

)
(A.2)

=
1

n
I
(
{Xℓe

iΘℓ}n
ℓ=1; {HℓXℓe

iΘℓ + Zℓ}
n
ℓ=1

∣
∣ {eiΘℓ}n

ℓ=1

)
(A.3)

=
1

n
I
(
X̃n

1 ; {HℓX̃ℓ + Zℓ}
n
ℓ=1

∣
∣ {eiΘℓ}n

ℓ=1

)
(A.4)

=
1

n
h
(
{HℓX̃ℓ + Zℓ}

n
ℓ=1

∣
∣ {eiΘℓ}n

ℓ=1

)
−

1

n
h
(
{HℓX̃ℓ + Zℓ}

n
ℓ=1

∣
∣ X̃n

1 , {e
iΘℓ}n

ℓ=1

)
(A.5)

=
1

n
h
(
{HℓX̃ℓ + Zℓ}
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1
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(
{HℓX̃ℓ + Zℓ}
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ℓ=1
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∣ X̃n

1

)
(A.6)

≤
1

n
h
(
{HℓX̃ℓ + Zℓ}

n
ℓ=1

)
−

1

n
h
(
{HℓX̃ℓ + Zℓ}

n
ℓ=1

∣
∣ X̃n

1

)
(A.7)

=
1

n
I
(
X̃n

1 ; {HℓX̃ℓ + Zℓ}
n
ℓ=1

)
. (A.8)

Here the first equality follows because {Θk} is independent of every other random
quantity; the third equality follows because {Zk} is circularly symmetric; in the
subsequent equality we substitute X̃ℓ = Xℓe

iΘℓ ; and the inequality follows since
conditioning reduces entropy.

Hence, a circularly symmetric input achieves a mutual information that is at
least as big as the original mutual information.
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Appendix B

Proof of Theorem 8

The proof of Theorem 8 consists of two parts: in a first part we show that the
right-hand side of (3.11) is an upper bound to the fading number and in a second
part we show that this upper bound can actually be achieved.

B.1 Derivation of an Upper Bound

In the following we will use the notation R , ‖X‖ to denote the magnitude of the
input vector X, i.e., we have X = R · X̂.

Fix an arbitrary ǫ > 0. Let {QX}E be a sequence of input distributions param-
eterized by the available power E that satisfy the average-power constraint (2.23)
and that almost achieve capacity in the sense that

I(X;Y) ≥ C(E) − ǫ, ∀E > 0. (B.1)

Then we know from Lemma 4 that {QX}E must escape to infinity, i.e., for an
arbitrary E0 ≥ 0

lim
E→∞

QX

(
R2 < E0

)
= 0. (B.2)

So fix E0 and define an indicator random variable E as follows:

E ,

{

1 if R2 ≥ E0,

0 otherwise,
(B.3)

and let
p , Pr[E = 1] = Pr

[
R2 ≥ E0

]
. (B.4)

Then it follows from (B.2) that
lim
E→∞

p = 1. (B.5)

Using these definitions we start to upper-bound mutual information as follows:

I(X;Y) ≤ I(X, E;Y) (B.6)

= I(E;Y) + I
(
X;Y

∣
∣E
)

(B.7)

= H(E) −H
(
E
∣
∣Y
)

+ I
(
X;Y

∣
∣E
)

(B.8)

≤ H(E) + I
(
X;Y

∣
∣E
)

(B.9)

= Hb(p) + pI
(
X;Y

∣
∣E = 1

)
+ (1 − p)I

(
X;Y

∣
∣E = 0

)
(B.10)

≤ Hb(p) + I
(
X;Y

∣
∣E = 1

)
+ (1 − p)CIID(E0). (B.11)
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Here the first inequality follows from adding an additional term to mutual informa-
tion; the subsequent equality from the chain rule; the subsequent equality from the
definition of mutual information; then the subsequent inequality follows from the
non-negativity of entropy (note that since E is binary, we do not have differential
entropies!); and the final inequality follows by upper-bounding p ≤ 1, the fact that
mutual information is non-negative, and by upper-bounding the mutual information
by the corresponding capacity where we note that an average-power constraint is
less stringent than a peak-power constraint, i.e., conditional on R2 < E0 the mutual
information can be at most the capacity for a peak-power constraint E0 which in
turn is upper-bounded by CIID(E0).

We then continue by bounding the second term in (B.11):

I
(
X;Y

∣
∣E = 1

)
≤ I
(
X;Y,Z

∣
∣E = 1

)
(B.12)

= I
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X; HX,Z
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∣E = 1

)
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= I
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X; HX
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∣E = 1

)
+ I
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)
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= I
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∣E = 1

)
− I
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∣ ‖HX‖, E = 1
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+ I
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(B.19)

= I
(
X; ‖HX‖eiΘ

∣
∣E = 1

)
+ I

(

X;
HX̂

‖HX̂‖

∣
∣
∣
∣
∣
‖HX‖, E = 1

)

. (B.20)

Here the first inequality follows from adding an additional random vector Z to the
argument of the mutual information; the subsequent equality from subtracting the
known vector Z from Y; the subsequent two equalities follow from the chain rule and
the independence between the noise and all other random quantities; then we split
HX into magnitude and direction vector and use the chain rule again; in (B.19) we
use the chain rule and we introduce eiΘ that is independent of all the other random
quantities and that is uniformly distributed on the complex unit circle; and the last
equality follows from the independence of eiΘ from all other random quantities.

We next would like to apply Lemma 5 to the first of the two terms in (B.20),
i.e., we choose S = X and T = ‖HX‖eiΘ :

I
(
X; ‖HX‖eiΘ

∣
∣E = 1

)

≤ −h
(
‖HX‖eiΘ

∣
∣X, E = 1

)
+ log π + α log β + log Γ

(

α,
ν

β

)

+ (1 − α)E
[
log
(
‖HX‖2 + ν

) ∣
∣ E = 1

]
+

1

β
E
[
‖HX‖2

∣
∣ E = 1

]
+
ν

β
, (B.21)

where α, β > 0, and ν ≥ 0 can be chosen freely.
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Note that from a conditional version of Lemma 2 with µ = 1 follows that

−h
(
‖HX‖eiΘ

∣
∣X, E = 1

)

= − log 2π − h
(
‖HX‖

∣
∣X, eiΘ , E = 1

)
− E[ log ‖HX‖ | E = 1] (B.22)

= − log 2π − h
(
‖HX̂‖ ·R

∣
∣ X̂, R,E = 1

)
− E[ log ‖HX‖ | E = 1] (B.23)

= − log 2π − h
(
‖HX̂‖

∣
∣ X̂, R,E = 1

)
− E[ logR | E = 1]

− E[ log ‖HX‖ | E = 1] (B.24)

= − log 2π − h
(
‖HX̂‖

∣
∣ X̂
)
− E[ logR | E = 1] − E[ log ‖HX‖ | E = 1] , (B.25)

where the second equality follows from the definition of R = ‖X‖; where the third
equality follows from the scaling property of entropy with a real argument; and
where the last equality follows because given X̂, ‖HX̂‖ is independent of R.

Next we assume 0 < α < 1 such that 1 − α > 0. Then we define

ǫν , sup
‖x‖2≥E0
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such that
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Moreover we bound
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where we have used the fact that R needs to satisfy the average-power constraint
(2.23).

Plugging (B.25), (B.30), and (B.34) into (B.21) yields
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Next we continue with the second term in (B.20):
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Here, the last inequality follows because conditioning cannot increase entropy and
because given X̂, the term HX̂/‖HX̂‖ does not depend on R.

Hence, using (B.38) and (B.35) in (B.20) we get
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Here, (B.40) follows from a conditional version of Lemma 2; and the final inequality
follows from the following bound:

E
[
log ‖HX‖2

∣
∣ E = 1

]
≥ inf

‖x‖2≥E0

E
[
log ‖Hx‖2

]
(B.43)
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E
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log ‖Hx̂‖2

]
(B.44)

, log E0 + ξ, (B.45)
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where the last line should be taken as a definition for ξ. Notice that

−∞ < ξ <∞ (B.46)

as can be argued as follows: the lower bound on ξ follows from [7, Lemma 6.7f)], [2,
Lemma A.15f)] because h(H) > −∞ and E

[
‖H‖2

F

]
<∞. The upper bound on ξ can

be verified using the concavity of the logarithm function and Jensen’s inequality.
Note that (B.42) does not depend on the distribution of R anymore, but only on

Q
X̂

! Hence, we can get an upper bound on capacity by taking the supremum over

all possible distributions of X̂.
Taking everything together we now have the following bound on channel capacity:

C(E) ≤ I(X;Y) + ǫ

≤ Hb(p) + (1 − p)CIID(E0) + hλ

(

HX̂

‖HX̂‖

)

− h
(
HX̂

∣
∣ X̂)

+ nRE

[

log ‖HX̂‖2
]

− log 2 + log Γ

(

α,
ν

β

)

+ α
(

log β − log E0 − ξ
)

+ ǫν +
1

β
sup
x̂

E
[
‖Hx̂‖2

]
· E +

ν

β
+ ǫ.

Hence we get an upper bound on the fading number as follows:

χ(H) = lim
E↑∞

{

C(E) − log

(

1 + log

(

1 +
E

σ2

))}

(B.47)

≤ lim
E↑∞

{

hλ

(

HX̂

‖HX̂‖

)

− h
(
HX̂

∣
∣ X̂) + nRE

[

log ‖HX̂‖2
]

− log 2 + ǫ

+Hb(p) + (1 − p)CIID(E0) + log Γ

(

α,
ν

β

)

+ α
(

log β − log E0 − ξ
)

+ ǫν +
1

β
sup
x̂

E
[
‖Hx̂‖2

]
· E +

ν

β
− log

(

1 + log

(

1 +
E

σ2

))}

(B.48)

≤ lim
E↑∞

{

sup
Q

X̂

{

hλ

(

HX̂

‖HX̂‖

)

− h
(
HX̂

∣
∣ X̂) + nRE

[

log ‖HX̂‖2
]

− log 2

}

+ ǫ

+Hb(p) + (1 − p)CIID(E0) + log Γ

(

α,
ν

β

)

+ α
(

log β − log E0 − ξ
)

+ ǫν +
1

β
sup
x̂

E
[
‖Hx̂‖2

]
· E +

ν

β
− log

(

1 + log

(

1 +
E

σ2

))}

(B.49)

= sup
Q

X̂

{

hλ

(

HX̂

‖HX̂‖

)

− h
(
HX̂

∣
∣ X̂) + nRE

[

log ‖HX̂‖2
]

− log 2

}

+ ǫ

+ lim
E↑∞

{

Hb(p) + (1 − p)CIID(E0) + log Γ

(

α,
ν

β

)

− log
1

α

+ α
(

log β − log E0 − ξ
)

+ ǫν +
1

β
sup
x̂

E
[
‖Hx̂‖2

]
· E +

ν

β

+ log
1

α
− log

(

1 + log

(

1 +
E

σ2

))}

(B.50)

= sup
Q

X̂

{

hλ

(

HX̂

‖HX̂‖

)

− h
(
HX̂

∣
∣ X̂) + nRE

[

log ‖HX̂‖2
]

− log 2

}

+ ǫ+ log
(
1 − e−ν

)
+ ν + ǫν − log ν. (B.51)
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Here in (B.49) we upper-bound four terms by maximizing over the distribution of
X̂ which does not depend on E . Hence in the subsequent equality we can take those
terms out of the limit. The last equality then follows from (B.5) and the following
choices of the free parameters α and β:

α , α(E) =
ν

log E + log supx̂ E[‖Hx̂‖2]
; (B.52)

β , β(E) =
1

α(E)
eν/α(E), (B.53)

for some constant ν ≥ 0. For this choice note that

lim
E↑∞

{

log Γ

(

α,
ν

β

)

− log
1

α

}

= log
(
1 − e−ν

)
; (B.54)

lim
E↑∞

α
(

log β − log E0 − ξ
)

= ν; (B.55)

lim
E↑∞

{
1

β
sup
x̂

E
[
‖Hx̂‖2

]
· E +

ν

β

}

= 0; (B.56)

lim
E↑∞

{

log
1

α
− log

(

1 + log

(

1 +
E

σ2

))}

= − log ν. (B.57)

(Compare with [7, Appendix VII], [2, Sec. B.5.9].)
To finish the derivation of the upper bound, we let ν go to zero. Note that

ǫν → 0 as ν ↓ 0 as can be seen from (B.26). Note further that

lim
ν↓0

{
log
(
1 − e−ν

)
− log ν

}
= 0. (B.58)

Therefore, we get

χ(H) ≤ sup
Q

X̂

{

hλ

(

HX̂

‖HX̂‖

)

− h
(
HX̂

∣
∣ X̂) + nRE

[

log ‖HX̂‖2
]

− log 2

}

+ ǫ. (B.59)

The upper bound now follows since ǫ is arbitrary.

B.2 Derivation of a Lower Bound

To derive a lower bound on capacity (or the fading number, respectively) we choose
a specific input distribution. Let X be of the form

X = R · X̂. (B.60)

Here X̂ ∈ C
nT is assumed to be a random unit-vector that is circularly symmetric,

but whose exact distribution will be specified later. The random variable R ∈ R
+
0

is chosen to be independent of X̂ and such that

logR2 ∼ U
(
[log x2

min, log E ]
)
, (B.61)

where we choose x2
min as

x2
min = log E . (B.62)
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Using such an input to our MIMO fading channel we get the following lower
bound to channel capacity:

C(E) ≥ I(X;Y) (B.63)

≥ I
(
R, X̂;Y

)
(B.64)

= I
(
X̂;Y

)
+ I
(
R;Y

∣
∣ X̂
)

(B.65)

= I
(
X̂;Y

)
+ I
(
R;YeiΘ

∣
∣ X̂
)
− I
(
R;YeiΘ

∣
∣ X̂
)

+ I
(
R;Y

∣
∣ X̂
)

(B.66)

= I
(
X̂;Y

)
+ I
(
R, eiΘ ;YeiΘ

∣
∣ X̂
)
− I
(
eiΘ ;YeiΘ

∣
∣ X̂, R

)

− I
(
R;YeiΘ

∣
∣ X̂
)

+ I
(
R;Y

∣
∣ X̂
)
. (B.67)

Here we have introduced a new random variable Θ ∼ U ([0, 2π]) which is assumed
to be independent of every other random quantity.

The last two terms can be rearranged as follows:

−I
(
R;YeiΘ

∣
∣ X̂
)

+ I
(
R;Y

∣
∣ X̂
)

= −h
(
YeiΘ

∣
∣ X̂
)

+ h
(
YeiΘ

∣
∣ X̂, R

)
+ h
(
Y
∣
∣ X̂
)
− h
(
Y
∣
∣ X̂, R

)
(B.68)

= −h
(
YeiΘ

∣
∣ X̂
)

+ h
(
YeiΘ

∣
∣ X̂, R

)
+ h
(
YeiΘ

∣
∣ X̂, eiΘ

)

− h
(
YeiΘ

∣
∣ X̂, R, eiΘ

)
(B.69)

= −I
(
eiΘ ;YeiΘ

∣
∣ X̂
)

+ I
(
eiΘ ;YeiΘ

∣
∣ X̂, R

)
. (B.70)

Here the second equality follows because eiΘ is independent of everything else so that
we can add it to the conditioning part of the entropy without changing its values,
and because differential entropy remains unchanged if its argument is multiplied by
a constant complex number of magnitude 1.

Putting this into (B.67) yields

C(E) ≥ I
(
X̂;Y

)
+ I
(
R, eiΘ ;YeiΘ

∣
∣ X̂
)
− I
(
eiΘ ;YeiΘ

∣
∣ X̂
)

(B.71)

= I
(
X̂;Y

)
+ I
(
ReiΘ ;YeiΘ

∣
∣ X̂
)
− I
(
eiΘ ;YeiΘ

∣
∣ X̂
)
. (B.72)

Here the last equality follows because from ReiΘ the random variables R and eiΘ

can be gained back.
We continue with bounding the first term in (B.72):

I
(
X̂;Y

)
= I
(
X̂;Y,Z

)
− I
(
X̂;Z

∣
∣Y
)

︸ ︷︷ ︸

≤ǫ(xmin)

(B.73)

≥ I
(
X̂;Y,Z

)
− ǫ(xmin) (B.74)

= I
(
X̂; HX̂R

)
− ǫ(xmin) (B.75)

= I

(

X̂;
HX̂

‖HX̂‖
, ‖HX̂‖ ·R

)

− ǫ(xmin) (B.76)

= I

(

X̂;
HX̂

‖HX̂‖

)

+ I

(

X̂; ‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖

)

− ǫ(xmin). (B.77)

Here the first equality follows from the chain rule; in the subsequent inequality we
lower-bound the second term by −ǫ(xmin) which is defined in Appendix B.3 and
is shown there to only depend on xmin and to tend to zero as xmin ↑ ∞; in the
subsequent equality we use Z in order to extract HX̂R from Y and then drop Y

and Z since given HX̂R it is independent of the other random variables; and the
last equality follows again from the chain rule.
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Next we bound the third term in (B.72):

−I
(
eiΘ ;YeiΘ

∣
∣ X̂
)

≥ −I
(
eiΘ ;YeiΘ ,ZeiΘ

∣
∣ X̂
)

(B.78)

= −I
(
eiΘ ; HXeiΘ ,ZeiΘ

∣
∣ X̂
)

(B.79)

= −I
(
eiΘ ; HXeiΘ

∣
∣ X̂
)
− I
(
eiΘ ;ZeiΘ

∣
∣HXeiΘ , X̂

)
(B.80)

= −I
(
eiΘ ; HXeiΘ

∣
∣ X̂
)

(B.81)

= −I

(

eiΘ ; ‖HX̂‖ ·R,
HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
X̂

)

(B.82)

= −I

(

eiΘ ;
HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
X̂

)

− I

(

eiΘ ; ‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖
eiΘ , X̂

)

. (B.83)

Note that in (B.81) we used the fact that Z is circularly symmetric.
Hence, plugging these results into (B.72) we get:

C(E) ≥ I
(
ReiΘ ;YeiΘ

∣
∣ X̂
)

+ I

(

X̂;
HX̂

‖HX̂‖

)

+ I

(

X̂; ‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖

)

− ǫ(xmin)

− I

(

eiΘ ;
HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
X̂

)

− I

(

eiΘ ; ‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖
eiΘ , X̂

)

(B.84)

= I
(
ReiΘ ;YeiΘ

∣
∣ X̂
)

+ I

(

X̂;
HX̂

‖HX̂‖

)

− I

(

eiΘ ;
HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
X̂

)

+ I

(

X̂; ‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖

)

− I

(

eiΘ ; ‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖
eiΘ , X̂

)

− ǫ(xmin), (B.85)

where in (B.85) we only rearranged the order of the terms.
We next bound the last two mutual information terms in (B.85):

I

(

X̂; ‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖

)

− I

(

eiΘ ; ‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖
eiΘ , X̂

)

= h

(

‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖

)

− h

(

‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖
, X̂

)

− h

(

‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖
eiΘ , X̂

)

+ h

(

‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖
eiΘ , X̂, eiΘ

)

(B.86)

= h

(

‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖

)

− h

(

‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖
, X̂

)

− h

(

‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖
eiΘ , X̂

)

+ h

(

‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖
, X̂

)

(B.87)

= h

(

‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖

)

− h

(

‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖
eiΘ , X̂

)

(B.88)

= h

(

‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖
eiΘ , eiΘ

)

− h

(

‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖
eiΘ , X̂

)

(B.89)
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≥ h

(

‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖
eiΘ , eiΘ

)

− h

(

‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖
eiΘ

)

(B.90)

= −I

(

eiΘ ; ‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖
eiΘ

)

(B.91)

= −I

(

eiΘ ; ‖HX̂‖ ·R

∣
∣
∣
∣
∣

HX̂

‖HX̂‖

)

(B.92)

= 0. (B.93)

Here, the inequality follows from conditioning the reduces entropy; the second last
equality holds because we have assumed X̂ to be circularly symmetric, i.e., X̂ “de-
stroys” the random phase shift of eiΘ ; and the last equality follows since Θ is inde-
pendent of any other random quantity.

Therefore, we are left over with the following bound:

C(E) ≥ I
(
ReiΘ ;YeiΘ

∣
∣ X̂
)

+ I

(

X̂;
HX̂

‖HX̂‖

)

− I

(

eiΘ ;
HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
X̂

)

− ǫ(xmin),

(B.94)
and continue by rewriting the second and third term as follows:

I

(

X̂;
HX̂

‖HX̂‖

)

− I

(

eiΘ ;
HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
X̂

)

= hλ

(

HX̂

‖HX̂‖

)

− hλ

(

HX̂

‖HX̂‖

∣
∣
∣
∣
∣
X̂

)

− hλ

(

HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
X̂

)

+ hλ

(

HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
X̂, eiΘ

)

(B.95)

= hλ

(

HX̂

‖HX̂‖

)

− hλ

(

HX̂

‖HX̂‖

∣
∣
∣
∣
∣
X̂

)

− hλ

(

HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
X̂

)

+ hλ

(

HX̂

‖HX̂‖

∣
∣
∣
∣
∣
X̂

)

(B.96)

= hλ

(

HX̂

‖HX̂‖

)

− hλ

(

HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
X̂

)

, (B.97)

which leaves us with

C(E) ≥ I
(
ReiΘ ;YeiΘ

∣
∣ X̂
)
+hλ

(

HX̂

‖HX̂‖

)

−hλ

(

HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
X̂

)

− ǫ(xmin). (B.98)

We next let the power grow to infinity E → ∞ and use the definition of the
fading number

χ(H) = lim
E↑∞

{

C(E) − log

(

1 + log

(

1 +
E

σ2

))}

. (B.99)

Since ReiΘ is circularly symmetric with a magnitude according to (B.61), we know
from [7, (108)], [2, (6.194)], that ReiΘ achieves the fading number of a memoryless
SIMO fading channel with partial side-information. In our situation we have

I
(
ReiΘ ;YeiΘ

∣
∣ X̂
)

= I
(
ReiΘ ; HX̂ReiΘ + Z

∣
∣ X̂
)

(B.100)
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where X̂ serves as partial receiver side-information (that is independent of the SIMO
input ReiΘ). Note that a random vector A is said to contain only partial side-
information about B if h(B|A) > −∞, i.e.,

h
(
HX̂

∣
∣X̂
)
> −∞, (B.101)

which is satisfied since we assume that h(H) > −∞ and E
[
‖H‖2

F

]
< ∞ (see [7,

Lemma 6.6], [2, Lemma A.14]).
Hence, using the fading number of a memoryless SIMO fading channel where the

receiver has access to some partial side-information [7, (108)], [2, (6.194)]:

χ(B|A) = hλ

(
B̂eiΘ

∣
∣A
)

+ nRE
[
log ‖B‖2

]
− log 2 − h(B|A), (B.102)

we get

χ(H) ≥ lim
E↑∞

{

I
(
ReiΘ ; HX̂ReiΘ + Z

∣
∣ X̂
)

+ hλ

(

HX̂

‖HX̂‖

)

− hλ

(

HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
X̂

)

− ǫ(xmin) − log

(

1 + log

(

1 +
E

σ2

))}

(B.103)

= lim
E↑∞

{

I
(
ReiΘ ; HX̂ReiΘ + Z

∣
∣ X̂
)
− log

(

1 + log

(

1 +
E

σ2

))

− ǫ(xmin)

}

+ hλ

(

HX̂

‖HX̂‖

)

− hλ

(

HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
X̂

)

(B.104)

= hλ

(

HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
X̂

)

+ nRE

[

log ‖HX̂‖2
]

− log 2 − h
(
HX̂

∣
∣ X̂
)

+ hλ

(

HX̂

‖HX̂‖

)

− hλ

(

HX̂

‖HX̂‖
eiΘ

∣
∣
∣
∣
∣
X̂

)

(B.105)

= hλ

(

HX̂

‖HX̂‖

)

+ nRE

[

log ‖HX̂‖2
]

− log 2 − h
(
HX̂

∣
∣ X̂
)
. (B.106)

Here in (B.105) we have used the fact that our choice (B.62) guarantees that ǫ(xmin)
tends to zero as E → ∞ (see Section B.3) and that we achieve the SIMO fading
number for a channel with input ReiΘ and output HX̂ReiΘ + Z.

The result now follows by choosing the distribution Q
X̂

such as to maximize this
lower bound to the fading number.

B.3 Additional Derivation for the Proof of the Lower

Bound

In the derivation of the lower bound to the fading number we need to find the
following upper bound

I
(
X̂;Z

∣
∣Y
)
≤ ǫ(xmin) (B.107)

and to show that ǫ(xmin) only depends on xmin and tends to zero as xmin tends to
infinity.
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Such a bound can be found as follows:

I
(
X̂;Z

∣
∣Y
)

= h(Z|Y) − h
(
Z
∣
∣Y, X̂

)
(B.108)

≤ h(Z) − h
(
Z
∣
∣Y, X̂, R

)
(B.109)

= h(Z) − h
(
Z
∣
∣HX̂R+ Z, X̂, R

)
(B.110)

≤ h(Z) − inf
x̂

inf
r≥xmin

h
(
Z
∣
∣Hx̂r + Z

)
(B.111)

= h(Z) − inf
x̂

h
(
Z
∣
∣Hx̂xmin + Z

)
(B.112)

= sup
x̂

I
(
Z; Hx̂xmin + Z

)
(B.113)

= sup
x̂

I

(
Z

xmin
; Hx̂ +

Z

xmin

)

(B.114)

= sup
x̂

{

h

(

Hx̂ +
Z

xmin

)

− h
(
Hx̂
)
}

(B.115)

, ǫ(xmin). (B.116)

The convergence now follows from [7, Lemma 6.11], [2, Lemma A.19].
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Appendix C

Proof of Corollary 13

We choose a constant nT × nT matrix B as follows:

B = diag

(
1

d1
, . . . ,

1

dnR

,
1

d1
, . . . ,

1

d1

)

(C.1)

and then we note that for a unit vector x̂ = (x̂(1), . . . , x̂(nT))T

HBx̂ = DBx̂ + H̃Bx̂ =






x̂(1)

...

x̂(nR)




+ H̃Bx̂ , ξ + H̃ (C.2)

where H̃ ∼ NC(0, σInR) with

σ2 =
|x̂(1)|2

|d1|2
+ · · · +

|x̂(nR)|2

|dnR |
2

+
|x̂(nR+1)|2

|d1|2
+ · · · +

|x̂(nT)|2

|d1|2
(C.3)

and where ξ ∈ C
nR with ‖ξ‖ ≤ 1. Therefore,

h
(
HBX̂

∣
∣ X̂ = x̂

)
= nR log πeσ2; (C.4)

E
[
log ‖HBx̂‖2

]
= log σ2 + gnR

(
‖ξ‖2

σ2

)

; (C.5)

and hence

nRE

[

log ‖HBX̂‖2
]

− h
(
HBX̂

∣
∣ X̂
)

= nRE



gnR




|X̂(1)|2 + · · · + |X̂(nR)|2

|X̂(1)|2

|d1|2
+ · · · + |X̂(nR)|2

|dnR
|2

+ |X̂(nR+1)|2

|d1|2
+ · · · + |X̂(nT)|2

|d1|2







− nR log πe.

(C.6)

The upper bound on the fading number now follows from Theorem 8 by upper-
bounding the hλ-term by log cnR ; by

|X̂(1)|2 + · · · + |X̂(nR)|2 ≤ 1; (C.7)
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by

|X̂(1)|2

|d1|2
+ · · · +

|X̂(nR)|2

|dnR |
2

+
|X̂(nR+1)|2

|d1|2
+ · · · +

|X̂(nT)|2

|d1|2

≥
|X̂(1)|2

|d1|2
+ · · · +

|X̂(nR)|2

|d1|2
+

|X̂(nR+1)|2

|d1|2
+ · · · +

|X̂(nT)|2

|d1|2
(C.8)

=
1

|d1|2

(

|X̂(1)|2 + · · · + |X̂(nT)|2
)

(C.9)

=
1

|d1|2
=

1

‖D‖2
(C.10)

where the inequality follows since |d1| ≥ |d2| ≥ . . . ≥ |dnR |; and from the fact that
gm(·) is a monotonically increasing function.

To derive the lower bounds we choose a particular distribution on X̂:

X̂ ,

(
Ξ̂

0

)

(C.11)

where Ξ̂ is chosen to be uniformly distributed on the unit sphere in C
nR . This choice

ensures that HBX̂ is isotropically distributed, i.e.,

hλ

(

HBX̂

‖HBX̂‖

)

= log
2πnR

Γ(nR)
(C.12)

and that in (C.6)

E



gnR




|X̂(1)|2 + · · · + |X̂(nR)|2

|X̂(1)|2

|d1|2
+ · · · + |X̂(nR)|2

|dnR
|2

+ |X̂(nR+1)|2

|d1|2
+ · · · + |X̂(nT)|2

|d1|2









= E



gnR




1

|X̂(1)|2

|d1|2
+ · · · + |X̂(nR)|2

|dnR
|2







 . (C.13)

The (in general not tight) lower bound (3.65) follows from (3.64) by upper-
bounding |X̂(ℓ)|2 ≤ 1.
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Appendix D

Proof of Proposition 14

This upper bound is based on the upper bound given in Corollary 9 for a choice of
B = InT . If nR > nT we choose for A

A = diag

(
a

d1
, . . . ,

a

dnT

, b, . . . , b

)

(D.1)

with a such that detA = 1 and with

b2 =

(
δ2

nT

)nT/nR

(D.2)

for δ as given in (3.67). For such a choice we get

nRE
[
log ‖AHx̂‖2

]
− h
(
AHx̂

)
≤ nR log E

[
‖AHx̂‖2

]
− log det A − h

(
Hx̂
)

(D.3)

= nR log

(

nR

(
δ2

nT

)nT/nR
)

− nR log πe (D.4)

where the inequality follows from Jensen. Plugging this into (3.27) yields

χ ≤ nR log π − log Γ(nR) + nR log nR + nT log

(
δ2

nT

)

− nR log πe (D.5)

= nT log

(
δ2

nT

)

+ nR log nR − log Γ(nR) − nR. (D.6)

If nR ≤ nT we choose for A

A = diag

(
a

d1
, . . . ,

a

dnR

)

(D.7)

with a such that detA = 1. For such a choice we get

nRE
[
log ‖AHx̂‖2

]
− h
(
AHx̂

)

≤ nR log E
[
‖AHx̂‖2

]
− log detA − h

(
Hx̂
)

(D.8)

= nR log

(
(
|d1|

2 · · · · · |dnR |
2
)1/nR (D.9)

·

(
1

|d1|2
+ · · · +

1

|dnR |
2

+
∣
∣x̂(1)

∣
∣2 + · · · +

∣
∣x̂(nR)

∣
∣2
))

− h
(
Hx̂
)

(D.10)

≤ nR log

(
(
|d1|

2 · · · · · |dnR |
2
)1/nR

(
1

|d1|2
+ · · · +

1

|dnR |
2

+ 1

))

− nR log πe(D.11)

= nR log δ2 − nR log πe (D.12)
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where the first inequality follows from Jensen, and the second by upper-bounding
|x̂(1)|2 + · · · + |x̂(nR)|2 ≤ 1. Plugging this into (3.27) yields

χ ≤ nR log π − log Γ(nR) + nR log δ2 − nR log πe (D.13)

= nR log δ2 − log Γ(nR) − nR (D.14)

= nR log
δ2

nR
+ nR lognR − log Γ(nR) − nR. (D.15)

The result now follows by combining (D.6) and (D.15).
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Appendix E

Proof of Lemma 17

Note that for the given choice of distribution we get

E

[

X(i)
]

= −d(i)* · p(i) +
d(i)*p(i)

1 − p(i)
·
(
1 − p(i)

)
= 0 (E.1)

and

E

[∣
∣X(i)

∣
∣2
]

=
∣
∣−d(i)*

∣
∣2 ·

E

E + 2|d(i)|2
+

∣
∣
∣
∣
∣

d(i)*E · (E + 2|d(i)|2)

(E + 2|d(i)|2) · 2|d(i)|2

∣
∣
∣
∣
∣

2

·
2|d(i)|2

E + 2|d(i)|2
(E.2)

=
|d(i)|2E

E + 2|d(i)|2
+

E2

4|d(i)|2
·

2|d(i)|2

E + 2|d(i)|2
(E.3)

=
|d(i)|2E

E + 2|d(i)|2
+

E2/2

E + 2|d(i)|2
(E.4)

=
E

2
·
2|d(i)|2 + E

E + 2|d(i)|2
=

E

2
. (E.5)

Moreover we have

E

[∣
∣d(1)X(1) + d(2)X(2)

∣
∣2

∣
∣X(1)

∣
∣2 +

∣
∣X(2)

∣
∣2

]

= p(1)p(2)

∣
∣−d(1)d(1)* − d(2)d(2)*

∣
∣2

∣
∣d(1)*

∣
∣2 +

∣
∣d(2)*

∣
∣2

+ p(1)
(
1 − p(2)

)

∣
∣
∣−d(1)d(1)* + d(2) d(2)*E

2|d(2)|2

∣
∣
∣

2

∣
∣d(1)*

∣
∣2 +

∣
∣
∣

d(2)*E
2|d(2)|2

∣
∣
∣

2

+
(
1 − p(1)

)
p(2)

∣
∣
∣d(1) d(1)*E

2|d(1)|2
− d(2)d(2)*

∣
∣
∣

2

∣
∣
∣

d(1)*E
2|d(1)|2

∣
∣
∣

2
+
∣
∣d(2)*

∣
∣2

+
(
1 − p(1)

)(
1 − p(2)

)

∣
∣
∣d(1) d(1)*E

2|d(1)|2
+ d(2) d(2)*E

2|d(2)|2

∣
∣
∣

2

∣
∣
∣

d(1)*E
2|d(1)|2

∣
∣
∣

2
+
∣
∣
∣

d(2)*E
2|d(2)|2

∣
∣
∣

2 (E.6)

= p(1)p(2)
(∣
∣d(1)

∣
∣2 +

∣
∣d(2)

∣
∣2
)

+ p(1)
(
1 − p(2)

)
(
|d(1)|2 − E

2

)2

∣
∣d(1)

∣
∣2 + E2

4|d(2)|2

+
(
1 − p(1)

)
p(2)

(
E
2 − |d(2)|2

)2

E2

4|d(1)|2
+
∣
∣d(2)

∣
∣2

+
(
1 − p(1)

)(
1 − p(2)

) E2

E2

4|d(1)|2
+ E2

4|d(2)|2

(E.7)
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≥ p(1)p(2)
(∣
∣d(1)

∣
∣2 +

∣
∣d(2)

∣
∣2
)

(E.8)

=
E

E + 2|d(1)|2
·

E

E + 2|d(2)|2

(∣
∣d(1)

∣
∣2 +

∣
∣d(2)

∣
∣2
)

(E.9)

→
∣
∣d(1)

∣
∣2 +

∣
∣d(2)

∣
∣2. (E.10)
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