Abstract

The large-inputs asymptotic capacity of a peak and average power
limited discrete-time Poisson channel is derived using a new firm
(non-asymptotic) lower bound and an asymptotic upper bound. The
latter upper bound is based on the dual expression for channel
capacity and the notion of capacity-achieving input distributions
that escape to infinity.



-||-   _|_ _|_     /    __|__   Stefan M. Moser
[-]     --__|__   /__\    /__   Senior Scientist, ETH Zurich, Switzerland
_|_     -- --|-    _     /  /   Adjunct Professor, National Yang Ming Chiao Tung University, Taiwan
/ \     []  \|    |_|   / \/    Web: https://moser-isi.ethz.ch/


Last modified: Wed May 10 13:01:03 2006