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Abstract—This paper studies the multiple-input single-output
free-space optical intensity channel with signal-independent ad-
ditive Gaussian noise and subject to both an average- and a peak-
intensity constraint. Closed-form expressions for the asymptotic
high-signal-to-noise-ratio (high-SNR) capacity and for the cor-
responding capacity-achieving input distribution are presented.
Moreover, several practical modulation schemes are proposed
that approach the capacity over a wide range of practical SNR
values.

I. INTRODUCTION

Optical communication systems based on simple intensity-
modulation and direct-detection (/M-DD systems) have re-
ceived much attention in both theoretical and practical research
[1]-[15] due to their ability to achieve high transmission rates
with simple implementations.

This work studies the multiple-input single-output (MISO)
optical intensity channel model with signal-independent ad-
ditive Gaussian noise, subject to both an average- and a
peak-intensity constraint (Section II). To date, the capacity of
this channel is not fully characterized. In [14], this channel
was investigated and the asymptotic capacity in the limit
when the signal-to-noise ratio (SNR) tends to infinity was
derived. However, the presented capacity expression in [14,
Prop. 5] contains a numerical optimization over one parameter.
In Section III, we review the equivalent SISO formulation
introduced in [14]. The first contribution of this work is the
derivation of a closed-form expression for this asymptotic
capacity and its corresponding capacity-achieving input dis-
tribution (Section IV).

The second contribution (Sections V-VI) of this paper ad-
dresses practical aspects of this optical communication channel
by introducing a modulation scheme that fixes the input
distribution and optimizes the constellation size. The scheme
is designed to achieve near-capacity rates across a wide range
of practical SNR values. In Section V, we present the proposed
scheme, which fixes the input distribution to be entropy-
maximizing while adjusting the number of constellation points
for different SNR values to maximize mutual information.
Section VI further simplifies the selection of constellation
size by using the Ozarow—Wyner lower bound [16]. In its
simplest form, our approach reduces to a dichotomous system
that consists of only two predefined constellations and input

distributions. The choice between the two input distributions
is governed by a single SNR threshold derived from the
Ozarow—Wyner lower bound. Numerical results presented in
Section VII demonstrate that the proposed modulation scheme
achieve rates near the channel capacity across a wide range of
practical SNR values.

II. CHANNEL MODEL

We consider a MISO channel of the form
Y =h'x+ 7, (1

where Y denotes the channel output, X = (z1,...,%n)"
denotes the channel input vector, h is the fixed channel state
vector, and Z ~ N(0,0?) is additive Gaussian noise. The
nt input random variables are proportional to the optical
intensities of LEDs and are therefore nonnegative:

X €R{, k=1,...,nt 2)

Similarly, h = (hq,he,...,h,,) has positive entries and,
without loss of generality, is assumed to be ordered:

hi>hy>---2>hp, >0. 3)

The input X is subject to both a per-LED peak-power and
an average-power constraint:

PX,>A]=0, Vke{l,...,nr} 4)
nr
Y E[Xi] <E, Q)
k=1
for some fixed parameters A, E > 0, where we define
E
as x € (0, ny). (6)

Here, IE[-] denotes the expectation operator. Note that contrary

to conventional systems (where an average-power constraint

is on the expectation of the squared channel inputs), here the

average-power constraint is on the expectation of the channel

inputs because the inputs are proportional to optical intensity,

i.e. the energy induced by each input vector X is given by:
oL, X). We define the SNR as A /o2,



The capacity of the channel (1) under the given constraints
is given by [17]:
Curo2(A, E) = sup I(X;Y), (M
Qx
where the supremum is over all channel input laws Qx on X
satisfying (2), (4), and (5).
III. ENERGY-OPTIMAL SIGNALING AND EQUIVALENT
CAPACITY

We introduce the shorthands

S020 (8a)
k
sk 2> hj, ke{l,...n}, (8b)
j=1
and define
nr
X2hWX= Z hie X 9)
k=1
Then we define the random variable U over the alphabet
{1,...,nr} to indicate the interval in which X lies:
(U - 1) — (X e [ASO,A51]>7 (10a)
and for k € {2,...,nr}:
(U - k;) — (X e (Ask_l,Ask}). (10b)

Note that X can be viewed as the scalar constellation being
sent through the AWGN channel. Indeed, X —— X oY
form a Markov chain and X is a deterministic function of X.
Thus, we have

[(X;Y) =1(X;Y). (11)

Hence, the MISO channel (1) is equivalent to a SISO channel
with input X and output ¥ = X + Z with the power-
constraints (4) and (5) on X transformed to a set of admissible
distributions for X. For any given X, there exists a unique
energy-optimal construction that is summarized in the follow-
ing lemma [14].

Lemma 1 (Energy-Optimal Construction of X [14, Lem. 4]):
Let X and U be defined as in (9) and (10). The energy-optimal
construction of X is:

Xli"':Xk_liA (1221)
X — Asj_
X = A T ASk—1 (12b)
hi, U=k
Xpp1 == Xp, = 0. (12¢)

We emphasize that using this construction, there is a unique
correspondence between X and X. Consequently, both the
peak-power constraint and the average-power constraint on
X can be expressed solely in terms of X. In particular, the
average power induced by a specific value of X is given by
the energy-generating function

g(X) 2 i(w + (k- 1)A> 1[U = k],

(13)
k=1 hi

where 1] denotes the indicator function. Note that g(X) is
defined on [0, nTA] and is continuous, convex, and piece-wise
linear with the slope in each segment being 1/hy.

It follows that we can express (7) using the following
equivalent SISO capacity on X.

Lemma 2 (Equivalent SISO Capacity [14, Prop. 3]):

Cuo2(A,0A) = max [(X;Y) (14)
X

where the maximization is over all laws on X € R{ satisfying

P[X > s,,A] =0 (15a)

and

E[g(X)] < aA. (15b)

Note that there exists a threshold value oy, such that if o > oy,
the constraint (15b) becomes inactive. From [14, Sec. IV], we
know that
11 &
A
Qyp = 5 + ?th(kf 1).

T =1

(16)

IV. MAXIMUM ENTROPY DISTRIBUTION

In this section, we will focus on the situation when both
peak- and average-power constraints are active, i.e., & < Q.

Proposition 3 (Maximum SISO Entropy): For a nonnegative
continuous random variable X with peak-constraint A and
first-moment constraint aA, the entropy-maximizing distribu-
tion is given by

1 xT

Qz)=——¢ X, 0<z<A, (17
ra(p)
where ka (u) is the normalizing factor
A -
i Al — e H

KA(M):/ e_Tdﬂ?:wy (18)

0 H

and p is chosen such that the first-moment constraint oA is
satisfied, i.e., y is the unique solution to

1 —h
a=--—. (19)
w l—e#
The corresponding maximum differential entropy is
1—e™#
h(Q) = log A + log m + peov. (20)
Proof: Omitted for space reasons. ]

In [14, Sec. IV.A], a lower bound on the MISO capacity
is presented and shown to be tight at high SNR, achieving
the exact capacity in the limit when A — oo. The derivation
of this bound is based on the maximum SISO entropy results
presented in Proposition 3. However, the given expression is
not in closed form, but contains a numerical optimization. We
will next provide a closed-form expression for this distribution
and the corresponding value of the asymptotic high-SNR
capacity.



Proposition 4 (Optimal Distribution of X ): Under the con-
straints defined in (15), the entropy-maximizing distribution
of X is

1 kg (@)
T)=——€e A , 0<z<Asy,,, 21
Q@) Ka(p) ' )
with the normalizing factor
nr
Ka(p) = ra(u) Y hge mED (22)
k=1

and where g is chosen such that the first-moment constraint
is satisfied:

/ T g(@) Q@) dz = A, (23)
0
i.e., p satisfies
l, L Jri k—1) =« (24)
1 eh — 1 Pk — &,
k=1
where
—pk
pr = PU =k = fu € ke{l,...,nt}. (25)

nT PR
Zj:lhje "

The corresponding maximum differential entropy is

h(Q) = log Ka(u) + pcx

=log ka (1) + log (Z hi e_“(k_1)> + pa.  (27)
k=1

Proof: Omitted for space reasons. [ |
We remark that in [14], h(X) is maximized by taking the
supremum over g, but the explicit form of the entropy-
maximizing distribution was not determined. In Proposition 4,
we show that the entropy-maximizing distribution is exponen-
tial in ¢g(Z) with the exponential parameter p. Thus, [14, (34)]
can be shown to be precisely:

(26)

X
=h 28
! <5nTA> (28)
1% pet h
=1-1 — — 29
8 1—e# 1—e# @(p Snrp )’ (29)

where Z(-||-) denotes relative entropy, p satisfies (24), and p
is the probability vector with components py. By [14, Prop. 5],
the capacity can be lower-bounded by

1 A2 2
Chto2(A,0A) > B log(l + iy €2U). (30)

2meo?

It is interesting to note that the optimal p is also used for
the optimal distribution of X}, conditional on U = k.

Proposition 5 (Optimal Distribution of X} ): Conditional on
U = k, the optimal' X, has an exponential distribution of the
form (17), with x chosen identically as for @ :

1 u
Qx,jv=k(Tp) = —F e A" (31)
Xi|U k( ) KfA(M)
Proof: Omitted for space reasons. ]

IRecall that according to (12), the other random variables X, j # k, are
deterministically equal to 0 or A.

V. PRACTICAL DISCRETE MODULATION: OPTIMIZATION
OF CONSTELLATION SIZE FOR FIXED DISTRIBUTION

The maximum-entropy analysis in the previous section
implicitly assumes a continuous (). However, in practical
digital communication systems, X must be chosen to be
discrete, taking value from a finite constellation X'. We denote
the discrete distribution on X' by ¢x.

In this section, we will discuss some practical design
considerations. As it is our objective of maximizing I(X;Y),
two design parameters arise: 1) the choice of constellation X',
and 2) the choice of the discrete distribution ¢g.

A possible approach is to fix some number N of evenly
spaced constellation points, and then numerically optimize the
probability distribution over these points (e.g., via gradient
search) by leveraging the concavity of mutual information in
the input distribution. The main drawback of this method lies
in its computational complexity. Since the optimal distribution
depends on the SNR, the optimization must be repeated for
each value of A. Moreover, selecting N poses additional
challenges because it also depends on A: a value of N that
is too small results in a suboptimal rate, while excessively
large values add unnecessary complexity without improving
the rate.

We propose a simpler approach that focuses on optimizing
the constellation size N, while maintaining a fixed input
distribution based on the entropy-maximizing distribution from
Section IV. This choice of distribution is known to be effective
in the high-SNR regime as it achieves the asymptotic high-
SNR capacity [14]. In the low-SNR region, the optimization
over N will lead to a choice N = 2, i.e., binary signaling
on 0 and s, A, which approximates the optimal variance-
maximizing distribution closely.”

In detail, the constellation X is chosen to consist of N
evenly spaced points over [0, s, Al:

Snr A

PAJon. A
X—{22A.A—2(N1)

,1=0,...,N —1}, (32)
where A corresponds to the half-spacing between two neigh-
boring constellation points. The discrete distribution g5 is
chosen to be discrete-entropy-maximizing, i.e.,

. I 4@

e A9

qX(x):K(M) ) 536)?7

(33)

where K(y) is the normalizing factor® and p is selected in
accordance with the average-power constraint (15b):

Z @ qx(7) = min{a, o N}
zeX

(34)

Note that the entropy-maximizing distribution in (33) degener-
ates to a uniform distribution if « is large enough such that the
average-power constraint becomes inactive. The corresponding

2The optimal variance-maximizing distribution is exactly (1/2,1/2) on the
points (0, sp; A) when the average-power constraint is inactive.

3Note that contrary to the normalizing factor K (1) in the probability
density (21), K(u) does not depend on A.



threshold value oy, N equals the ratio of average power to A
that is induced by a uniform distribution over the N points,
and thus depends on N. It is given as

N-1
1 .Sn—rA
Qh, N = AN jz_:()g(JN _1>.

Proposition 6 (Discrete Threshold on N): The threshold
value oy, N for a discrete, evenly spaced constellation on X is
monotonically decreasing in N and is lower-bounded by the
threshold ay, in (16).

Proof: Omitted for space reasons. ]
We see that when o < ag, one can be sure that the
average-power constraint is always active for all N. When
> g2, the average-power constraint is never active for
any N (and thus a uniform distribution can always be used).
For @ € [oun, an,2) and once an N is chosen, one needs
to check the exact value of oy N to ensure the compliance
of the average-power constraint. We remark that for N = 2,
the equiprobable distribution has mass points on X = 0 and
X = s, A, therefore oy, 2 = nr/2 holds for any channel.

(35)

VI. CONSTELLATION SIZE BASED ON OZAROW—W YNER
MUTUAL INFORMATION LOWER BOUND

Selecting the appropriate constellation size N is crucial for
good information rates. It is generally observed that for small
A, a small N is optimal, while for large A, a larger N is
required. To address this, we derive a lower bound on the
mutual information as a function of N and A. This bound
will serve as a metric to determine a suitable N for fixed A.
The bound is largely based on the Ozarow—Wyner bound [16,
Th. b], which we adapt to our setting in the following lemma.

Lemma 7 (Ozarow—Wyner Mutual Information Lower Bound
[16]): Let A and N be fixed, and consequently X and A
are also fixed according to (32). Let X be a discrete random
variable with arbitrary distribution ¢¢ over X. Then

[(X;Y) > H(X) +log(24) — ;1°g<A3 + ]EE%L)

- % log(2me). (36)

Proof: See [16, (15)—(19)]. ]

The lower bound in Lemma 7 is a function of the peak-

power constraint A, the number of constellation points N,

and the distribution ¢g. Let A be fixed, we now propose

to maximize (36) over N € N for a predefined set N.

Maximizing the lower bound provides a practical heuristic
method to maximize the mutual information.

N* = argmaX{H(X) + log(2A)

NeN
1 A? E[X?]
—Zlog| — 4+ ==—— - 37
2 g<3 Ex 1) ©7
The set A is a design parameter. An obvious choice is to
optimize over all natural numbers N' = N. However, empirical

observations show that this often results in excessively large
N* values. Thus, it is practical to impose an upper limit on
N. We heed the heuristic recommendation in [16] and define
the upper limit as 2/C +11 where C* can be obtained by
evaluating known capacity upper bounds [14] for some chosen
maximum value of A. We propose two practical choices of N
with varying levels of complexity:

1) Bounded Powers of Two: N' = {2*,2%, .., 2lC™+1] }.

2) Dichotomous: N = {2,2“:*4'1]}.

In particular, the dichotomous system represents the sim-
plest approach. The maximization of (37) amounts to defining
an SNR-threshold Ay, which is precisely when the lower
bound in (36) with N = 2[C€"+11 achieves higher value than
that of N = 2. For A < Ay, we use a binary constellation
X = {0,s,,A} and the corresponding entropy-maximizing
(binary) distribution (33); for A > Ay, we use constellation
(32) and distribution (33) with N = 2/€"+11,

Recall from the previous section that with a selected N,
our proposed choice of gz is the N-point entropy-maximizing
distribution (33), which can be either equiprobable or energy-
exponential depending on «, i.e., E[X?] and H(X) depend
on «. The corresponding expressions are omitted for space
reasons.

VII. NUMERICAL RESULTS

Figures 1 and 2 illustrate the performance of the two
proposed modulation schemes, respectively, in comparison
with known capacity bounds. In this example, the MISO
channel has gains h = [3,2,1.5] and @ = 0.6 < «ay. Hence,
the maximum-entropy distribution is exponential in g(X). All
plots use o2 = 1, and thus the SNR corresponds to A.

In Figure 1, we set N/ = {2%,22, ... 2[C"+11} where
C* is evaluated using the tightest upper bound known (SISO
Duality-Upper Bound [14, Prop. 10]). In this case, 2/€ 11 =
256. We show the following:

1) (Solid blue) The Ozarow—Wyner lower bound (36), max-
imized over N = {2%,22 ... 2lC"+11},

2) (Circled yellow) Information rates achieved by the pro-
posed maximum-entropy distribution (33) with the corre-
sponding N*.

3) (Purple) Information rates achieved by a gradient descent
optimization on a constellation grid with 256 points.

First, we notice that the Ozarow—Wyner lower bound closely
approximates the known entropy-lower bound [14, Prop. 5]
from 0dB onward, which is consistent with the findings in
[16]; the bounds are close for large SNR. Second, the rates
achieved by gradient descent is of particular interest because it
represents the maximum achievable rate given a fixed constel-
lation grid with 2/€"+11 points. We remark that this baseline is
of particular value in the mid-SNR region because the capacity
of this channel is unknown (except in the asymptotic low-
and high-SNR cases [14]). By construction, the maximum
constellation size in our set AV is also 2/€" 11, Therefore, any
distribution selected with N € N is also a feasible solution
in the gradient descent search. We observe that our proposed
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Figure 1. Capacity bounds and mutual information rates of the MISO
channel with three LEDs and channel gains h = [3,2, 1.5] (ap, = 1.2692,
ap,2 = 1.5), a = 0.6, and noise variance 02 =1.The Ozarow—Wyner lower
bound (blue) is plotted in combination with known capacity bounds from [4],
[14]. The mutual information rates achieved by the proposed modulation (33)
with N selected according to (37) with A/ = {21,22,...,2[C*+ﬂ} is
shown (yellow circle) to be close to the maximum achievable rate on the
same maximum constellation of 256 points (purple).

maximum-entropy modulation achieves rates (yellow) that are
very close to the maximum achievable rate (purple). This
suggests that i) using a maximum-entropy distribution on an
N-point constellation grid is effective, and ii) the Ozarow—
Wyner bound is an effective optimization objective to select
the constellation size N, despite that the Ozarow—Wyner bound
is loose in the low-SNR regime.

Figure 2 demonstrates the performance of the dichotomous

modulation scheme, i.e., when NV = {2, olC+1] }. We plot:

1) (Purple) Maximum information rates achieved by a gra-
dient descent optimization on a constellation grid with
256 points.

2) (Light blue) The Ozarow—Wyner lower bound (36) and
(dark blue) information rates of the proposed maximum-
entropy distribution (33), both with N = 2.

3) (Light red) The Ozarow—Wyner lower bound (36) and
(dark red) information rates of the proposed maximum-
entropy distribution (33), both with N = 256.

The dichotomous modulation scheme switches from N = 2
to N = 256 according to Ay where the Ozarow—Wyner
lower bounds intersect. We observe that Ay obtained from
the Ozarow—Wyner is remarkably close to the true threshold
when N = 256 achieves a higher rate than N = 2. The
Ozarow—Wyner bound also shows to be an effective method to
maximize the mutual information when N = {2, 2lC +1] b
Empirical observations show that the dichotomous scheme is
not too far away from the maximum achieved by the gradient
descent. In this example, the dichotomous scheme is at most
0.34 bits lower than the gradient descent search.

VIII. CONCLUSIONS

This paper presents theoretical and practical contributions
to the study of the multiple-input and single-output (MISO)

3 T T

== Gradient Descent with N= 256

=& Proposed Modulation (33) with N= 2
2.5 | =e— Proposed Modulation (33) with N= 256
Ozarow-Wyner Lower Bound N= 2
Ozarow-Wyner Lower Bound N= 256
2|~ - Dichotomous Switching Threshold A

Information Rate [bits]

o}
(4]

15 -10 5
A [dB]

Figure 2. Bounds and mutual information rates with N set to 2 (blue) and
256 (red). The respective Ozarow—Wyner lower bounds with the same N
are also shown in the solid lines. This demonstrates the dichotomous scheme
with N' = {2,256}. The intersection of the Ozarow—Wyner bounds mark
A, Where we switch from N = 2 to N = 256. In this case, Ay, = 1dB.
As a baseline, the maximum achievable rate via gradient search on a 256-
point constellation is plotted. The channel is the same channel as in Figure 1.

freespace optical intensity channel with signal-independent
additive Gaussian noise and with both a peak-power and first-
moment constraint on the input vector X.

On the theoretical side, we extend the asymptotic high-SNR
capacity results from [14], which maximized the differential
entropy h(h'X) over an exponential parameter y. We show
that the maximum-entropy distribution of h'X must be ex-
ponential in the energy of X, with the exponential param-
eter 1 uniquely defined by the first-moment constraint. We
present closed-form expressions for the asymptotic high-SNR
capacity-achieving distribution, as well as the corresponding
capacity and differential entropy expressions.

On the practical side, we address the design of modu-
lation schemes for this channel. Specifically, we propose a
simple scheme that fixes the input distribution to be entropy-
maximizing across all SNR regimes. The mutual information
is then maximized by adapting the constellation size: smaller
constellations for low SNR and larger constellations for high
SNR. The selection of the constellation size is guided by
the Ozarow—Wyner lower bound, which provides a practical
yet low-complexity heuristic for maximizing the mutual infor-
mation. Numerical results showcase the effectiveness of the
proposed scheme and the value of the Ozarow—Wyner bound
in determining the constellation size.
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