
EXTENDED VERSION of a Paper in IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011 1

The Fading Number of a Multiple-Access Rician

Fading Channel
Gu-Rong Lin and Stefan M. Moser, Senior Member, IEEE

Abstract—The sum-rate capacity of a noncoherent memory-
less multiple-access Rician fading channel is investigated under
three different categories of power constraints: individual per
user peak-power constraints, individual per user average-power
constraints, or a global power-sharing average-power constraint.
Upper and lower bounds on the sum-rate capacity are derived,
and it is shown that at high signal-to-noise ratio the sum-
rate capacity only grows double-logarithmically in the available
power. The asymptotic behavior of capacity is then analyzed in
detail and the exact asymptotic expansion is derived including
its second term, the so called fading number. It is shown that the
fading number is identical to the fading number of the single-user
Rician fading channel that is obtained when only the user seeing
the best channel is transmitting and all other users are switched
off at all times. This pessimistic result holds independently of the
type of power constraint that is imposed.

Index Terms—Channel capacity, escaping to infinity, fading
number, high signal-to-noise ratio (SNR), multiple-access channel
(MAC), multiple-input single-output (MISO), multiple users,
noncoherent detection, Rician fading, sum-rate capacity.

I. INTRODUCTION

In a noncoherent fading channel where neither transmitter

nor receiver know the fading realization, it has been shown

in [1] that the capacity at high signal-to-noise ratio (SNR)

behaves fundamentally differently from the usual asymptotics

seen in Gaussian channels or in coherent fading channels:

instead of a logarithmic growth in the SNR, the capacity

only grows double-logarithmically. To be precise, if the fading

process is stationary, ergodic, and has a finite differential

entropy rate and a finite expected second moment, then we

have

C(SNR) = log(1 + log(1 + SNR)) + χ+ o(1) (1)

where o(1) denotes terms that tend to zero as the SNR tends

to infinity; and where χ is a constant independent of the

SNR that is called fading number. The value of χ depends

on the exact specifications of the fading law. In the situation

of a general memoryless fading process, i.e., a fading process

that is independent and identically distributed (IID) over time
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and of a general law, the fading number has been derived

for a single-input single-output (SISO) channel, a single-input

multiple-output (SIMO) channel, and a multiple-input single-

output (MISO) channel in [1], and the multiple-input multiple-

output (MIMO) channel was solved in [2]. The more general

setup of a stationary, ergodic and regular fading process has

been analyzed in [1] for the SISO case, [3] solved the SIMO

case, and the most general MIMO case was addressed in [4].

Note that even though the fading number is defined only

in the limit when the available SNR tends to infinity, it

has practical relevance also for finite SNR: it is a good

estimator for the threshold where the capacity changes from

the normal logarithmic growth to the highly inefficient double-

logarithmic growth. For more details we refer to the discussion

in Section III-C and to the introduction section in [4].

All the above mentioned results are restricted to the situation

of a single transmitter (possibly with several antennas) and

a single receiver. The present work is a first step towards

generalizing the setup to a multiple-user situation. Concretely,

we include m transmitters, each having a certain number ni

of antennas and trying to communicate to a common receiver

with only one antenna. The fading law is assumed to be

memoryless both over time and space and Gaussian distributed

with line-of-sight (LOS) components. We will propose upper

and lower bounds on the sum-rate capacity of this channel

and derive the exact asymptotic expansion of the sum-rate

capacity for the SNR tending to infinity. It will turn out that

the asymptotic capacity corresponds to the single-user capacity

for the case when all but one user are switched off at all times.

The remainder of this paper is structured as follows. After

some short remarks about notation we will introduce the mul-

tiple-access (MAC) Rician fading channel and three different

power constraints in Section II. In Section III we will derive

upper and lower bounds on the sum-rate capacity of this model

that are valid for all SNR. These bounds are based on new

bounds for the single-user MISO Rician fading channel. We

will see there that in contrast to the low-SNR regime, at high

SNR the capacity only grows double-logarithmically in the

power.

To investigate the threshold between these two regimes, in

Sections IV and V the asymptotic behavior of the sum-rate

capacity will be analyzed and stated exactly. The proof of the

main result can be found in Section VI, while the derivations

of some intermediate steps have been moved to the appendices.

We conclude in Section VII.

We try to clearly distinguish random and constant quantities:

while random quantities are denoted by capital Roman letters,

constants are typeset in small Romans or the Greek alphabet.
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To distinguish numbers from vectors, vectors are in bold face.

E.g., X denotes a random vector and x its realization, while

Y is a random variable and y its realization.

There are a few exceptions to this rule. As is customary

we use capital letters to denote matrices, however, in order to

be able to distinguish them from random variables we use a

different font: D. Moreover, C stands for capacity, E for the

available power, I denotes the mutual information functional,

and Q is a cumulative distribution function (CDF) of the

channel input.

The superscript T refers to the transpose operation of vectors

and matrices. We use ‖ · ‖ to denote the Euclidean norm of

vectors. Sets are set in calligraphic font D, and Dc denotes

the complement set.

All rates specified in this paper are in nats per channel use,

i.e., log(·) denotes the natural logarithmic function.

II. CHANNEL MODEL AND POWER CONSTRAINTS

We consider a multiple-access channel with m transmitters

(users) and one receiver. The signals transmitted by the users

are assumed to be independent. The receiver is assumed to

have only one antenna, whereas each user i has some number

ni of transmit antennas, i = 1, . . . ,m, which yields a total

number of antennas at the transmitter side of

nT ,

m∑

i=1

ni. (2)

All channels between one of the nT transmit antennas

and the receiver antenna are assumed to be memoryless and

independent Rician fading channels, i.e., the fading is complex

Gaussian distributed with variance 1 and some mean (line-of-

sight component) d
(ℓ)
i ∈ C. Note that in the following we will

use i (and sometimes j) to denote the users, i.e., i = 1, . . . ,m,

and ℓ to denote the antennas of user i, i.e., ℓ = 1, . . . , ni.

To simplify our notation and because we assume all chan-

nels to be IID over time, we restrain ourselves from using

time indices. We would like to point out that the assumption

of memorylessness has been made for simplicity. We believe

it is possible to extend the results to fading with memory (see

also the discussion in Section VII).

So the channel output Y ∈ C can be written as

Y =

m∑

i=1

(dT

i +H
T

i)xi + Z (3)

=

m∑

i=1

ni∑

ℓ=1

(
d
(ℓ)
i +H

(ℓ)
i

)
x
(ℓ)
i + Z. (4)

Here xi ∈ C
ni denotes the input vector for the ni antennas of

user i; the components of the random vector di+Hi describe

Rician fading

H
(ℓ)
i + d

(ℓ)
i ∼ NC

(

d
(ℓ)
i , 1

)

(5)

(hence, H
(ℓ)
i are zero-mean, unit-variance, circularly symmet-

ric, complex Gaussian random variables) and are assumed to

be independent

H
(ℓ)
i ⊥⊥ H

(ℓ′)
i′ , (i, ℓ) 6= (i′, ℓ′) (6)

and Z ∼ NC

(
0, σ2

)
denotes additive, zero-mean, circu-

larly symmetric Gaussian noise, independent from the fading

(H1, . . . ,Hm).
We assume a noncoherent situation, i.e., neither transmitters

nor receiver have knowledge of the current fading realization,

they only know the fading distributions.1 Note that we do

not restrict the receiver and/or transmitters to try to gain such

knowledge. Any power or bandwidth used for such estimation

schemes, however, are taken into account for the capacity

analysis and are not given for free as in a coherent setup.

Neither will it be possible for the receiver to gain perfect

channel knowledge.

We do not allow cooperation between the users, i.e., we

assume that the input vectors of the different users are statis-

tically independent:

Xi ⊥⊥ Xj , i 6= j. (7)

We also mention for completeness that the users’ input vectors

are assumed to be independent from fading and noise.

For simplicity of notation we will sometimes collect all LOS

vectors di into one nT-vector d:

d , (dT

1, . . . ,d
T

m)T (8)

the fading vectors Hi into one fading vector H of length nT:

H , (HT

1, . . . ,H
T

m)T (9)

and the input vectors Xi of all users into one nT-vector X:

X , (XT

1, . . . ,X
T

m)T. (10)

In the given setup we can consider several possible con-

straints on the power. We will analyze three different scenarios:

• Peak-Power Constraint: At every time-step every user

i is allowed to use a power of at most κi

mE:

Pr
[

‖Xi‖2 >
κi

m
E

]

= 0 (11)

for some fixed number κi > 0.

• Average-Power Constraint: Averaged over the length of

a codeword, every user i is allowed to use a power of at

most κi

mE:

E
[
‖Xi‖2

]
≤ κi

m
E (12)

for some fixed number κi > 0.

• Power-Sharing Average-Power Constraint: Averaged

over the length of a codeword all users together are

allowed to use a power of at most κ̄E:

E

[
m∑

i=1

‖Xi‖2
]

≤ κ̄E (13)

for some fixed number κ̄ > 0.

Note that if κi = 1 for all i, we have the special case where

all users have an equal power available. Also note that in (11)

and (12) we have normalized the power to the number of

users m. This might be strange from an engineering point of

view; however, in regard of our freedom to choose κi, it is

1Note that the constant line-of-sight (LOS) vectors di are part of the
distributions and are, therefore, known everywhere.
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irrelevant, and it simplifies our analysis because we can easily

connect the power-sharing average-power constraint with the

other two constraints. Indeed, if we define κ̄ to be the average

of the constants {κi}mi=1, i.e.,

κ̄ ,
1

m

m∑

i=1

κi (14)

then the three constraints are in order of strictness: the peak-

power constraint is the most stringent of the three constraints

in the sense that if (11) is satisfied for all i = 1, . . . ,m, then

the other two constraints are also satisfied; and the average-

power constraint is the second most stringent in the sense

that if (12) is satisfied for all i, then also the power-sharing

average-power constraint (13) is satisfied. In the remainder of

this paper we will always assume that (14) holds.

For some comments about even more general types of power

constraints, we refer to the discussion in Section VII.

It is worth mentioning that the slackest constraint, i.e., the

power-sharing average-power constraint, implicitly allows a

form of cooperation: while the users are still assumed to be

statistically independent, we do allow cooperation concerning

power distribution. This is not very realistic, however, we

include it anyway because it will help in deriving bounds on

the sum-rate capacity. As a matter of fact, it will turn out that

the asymptotic sum-rate capacity is unchanged irrespective of

which constraint is assumed.

The sum-rate capacity CMAC(E) of the channel (3) is given

by

CMAC(E) = sup
QX1

···QXm

power constraint

I(X1, . . . ,Xm;Y ) (15)

where the supremum is over the set of all probability distribu-

tions of the m input vectors such that the users are statistically

independent of each other (7), and such that one particular

power constraint (11), (12), or (13) is satisfied.

III. NONASYMPTOTIC BOUNDS ON THE SUM-RATE

CAPACITY

A. Relationship between MAC and MISO

We derive an upper and a lower bound on the sum-rate

capacity (15) by properly changing the setup to a single-user

situation.

Firstly, we upper-bound CMAC(E) by dropping the indepen-

dence-constraint (7), i.e., allowing full cooperation among all

users. Moreover, we choose the most relaxed power constraint

(13):

CMAC(E) = sup
QX1

···QXm

power constraint

I(X1, . . . ,Xm;Y ) (16)

≤ sup
QX1,...,Xm

E[
∑

m
i=1

‖Xi‖
2]≤κ̄E

I(X1, . . . ,Xm;Y ) (17)

= sup
QX

E[‖X‖2]≤κ̄E

I(X;Y ) (18)

= CMISO,av,d(κ̄E). (19)

Here CMISO,av,d(Υ) denotes the (single-user) capacity of the

MISO Rician fading channel with nT transmitter antennas (and

one receiver antenna)

Y = d
T
x+H

T
x+ Z (20)

(where d, H, and x are defined in (8), (9), and (10), respec-

tively) under the average-power constraint

E
[
‖X‖2

]
≤ Υ. (21)

On the other hand, obviously the sum rate cannot be smaller

than the single-user rate that can be achieved if all but one user

are switched off, assuming the most stringent type of power

constraint (11), and assuming the minimal amount of power

among all users. I.e., for an arbitrary i ∈ {1, . . . ,m},

CMAC(E) = sup
QX1

···QXm

power constraint

I(X1, . . . ,Xm;Y ) (22)

≥ sup
QX1

···QXm

Pr[‖Xj‖
2>

κmin
m

E]=0, ∀j

I(X1, . . . ,Xm;Y )

∣
∣
∣
∣
Xj≡0,
∀ j 6=i

(23)

= sup
QXi

Pr[‖Xi‖
2>

κmin
m

E]=0

I(Xi;Y ) (24)

= CMISO,pp,di

(κmin

m
E

)

. (25)

Here, CMISO,pp,di
(Υ) denotes the (single-user) capacity of the

MISO Rician fading channel with ni transmitter antennas (and

one receiver antenna)

Y = d
T

ixi +H
T

ixi + Z (26)

under the peak-power constraint

Pr
[
‖Xi‖2 > Υ

]
= 0 (27)

and we define

κmin , min
i∈{1,...,m}

κi. (28)

Hence, we have the following first important result.

Theorem 1: The sum-rate capacity (15) of the multiple-

access Rician fading channel (3) under one of the three power

constraints (11), (12), or (13) is bounded as follows:

max
i

CMISO,pp,di

(κmin

m
E

)

≤ CMAC(E) ≤ CMISO,av,d(κ̄E).

(29)

B. Bounds on Capacity of MISO Rician Fading Channel

In order to be able to derive more explicit bounds on the

MAC sum-rate capacity, we make a small detour and develop

some bounds on the MISO Rician fading channel. We start

with an upper bound, which is a generalization of a bound

from [1], based on a dual expression of mutual information.
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Proposition 2: The capacity of the MISO Rician fading

channel (20) under an average-power constraint (21) is upper-

bounded as follows:

CMISO,av,d(Υ)

≤ inf
0<α≤1
β>0,ν≥0

{

α log

(
β

σ2

)

− 1 + log Γ

(

α,
ν

β

)

+
(‖d‖2 + 1)Υ + σ2

β
+

ν

β

+ (1− α)

(

log

( ‖d‖2Υ
Υ+ σ2

)

− Ei

(

− ‖d‖2Υ
Υ+ σ2

))

+ (1− α)
(

log
( ν

σ2

)

− e
ν

σ2 Ei
(

− ν

σ2

)

+ γ
)
}

(30)

where Ei (·) denotes the exponential integral function

Ei (−ξ) , −
∫ ∞

ξ

e−t

t
dt, ξ > 0 (31)

and where γ ≈ 0.57 denotes Euler’s constant.

Proof: See Appendix A.

In order to be able to apply any lower bound on the MISO

Rician fading channel to Theorem 1, we need to consider a

peak-power constraint instead of an average-power constraint.

We will derive two different lower bounds. The first bound

relies on an input chosen such that the logarithm of its magni-

tude is uniformly distributed in the interval
[
1
2 logΥ0,

1
2 logΥ

]

for some constant 0 < Υ0 < Υ.

The second lower bound is based on a binary input

Xi ,
√
Υ · Ξ · di

‖di‖
eiΦ (32)

with Pr[Ξ = 1] = 1 − Pr[Ξ = 0] = p and Φ (independent of

Ξ) being uniform between 0 and 2π, Φ ∼ U ([0, 2π)). The

induced mutual information is then computed numerically.

Proposition 3: The capacity of the MISO Rician fading

channel (26) under a peak-power constraint (27) is lower-

bounded as follows:

CMISO,pp,di
(Υ) ≥ conv.-hull

{
max{CL1,di

(Υ),CL2,di
(Υ)}

}

(33)

where

CL1,di
(Υ)

, max
0<Υ0<Υ

{

log log

(
Υ

Υ0

)

+ log
(
‖di‖2

)
− Ei

(
−‖di‖2

)

− 1− log

(

1 +
σ2

Υ0

)}

(34)

and

CL2,di
(Υ)

, max
0≤p≤1

{

−
∫ ∞

0

fR2
i
(t) log fR2

i
(t) dt− 1

− p log
(
Υ+ σ2

)
− (1− p) log

(
σ2
)
}

(35)

with

fR2
i
(t) ,

1− p

σ2
e−

t

σ2 +
p

Υ+ σ2
e
−

t+‖di‖
2Υ

Υ+σ2 I0

(

2‖di‖
√
Υt

Υ+ σ2

)

.

(36)

Here I0(·) denotes the modified Bessel function of order zero,

and Ei (·) is defined in (31).

Proof: See Appendix B.

C. Discussion

Proposition 2 and 3 can be applied directly to Theorem 1

to get bounds on the sum-rate capacity. Figure 1 depicts an

example with two users m = 2, each of them having the

same power constraint, i.e., κ1 = κ2 = κ̄ = 1. The LOS

components are assumed to be ‖d1‖ = 6 and ‖d2‖ = 8, such

that ‖d‖ = 10. Note that the exact choice of the vectors d1 and

d2 including their dimensions n1 and n2 is irrelevant for the

given bounds. The LOS components influence the expressions

only via their magnitudes.

We clearly see that there exist two distinct regimes: for SNR

values below around 10 dB (or a rate of about CMAC ≈ 5 nats)

the sum-rate capacity grows logarithmically in the SNR, while

above the threshold the growth changes dramatically and

becomes very slowly growing. We will show in the next

section that this high-SNR growth is double-logarithmic.

We conclude that one should not use this channel at high

SNR, and we ask for more insight about this threshold between

the efficient low-SNR regime and the highly inefficient high-

SNR regime. As described in [4, Sec. I.B] it turns out

that an asymptotic capacity analysis is the clue to such an

investigation. This might seem strange at first sight as we just

have concluded that we are not interested in this channel at

high SNR. However, it is important to realize that around the

threshold, the sum-rate capacity is dominated by the second

(constant) term of the asymptotic high-SNR expansion of the

sum-rate capacity (and not by the double-logarithmic term!).

Indeed, we note that

log(1 + log(1 + Υ)) ≈ 2 nats (37)

for Υ ∈ [20 dB, 80 dB], and therefore conclude that as a rule

of thumb the threshold will be around CMAC ≈ χ+ 2 nats.

Hence, in deriving the asymptotic expansion of capacity

one gains important understanding of the behavior of the

channel at a reasonable and finite SNR. In the remainder of this

paper we will investigate the asymptotic behavior of the sum-

rate capacity and in particular compute its exact asymptotic

expansion.

IV. THE ASYMPTOTIC SUM-RATE CAPACITY

We will now consider the asymptotic case, i.e., the situation

when the available power E tends to infinity. We know that

for the MISO Rician fading case2 [1, Theorem 4.27]

CMISO(E) = CMISO,av,d(E) = CMISO,pp,d(E)

= log log

(
E

σ2

)

+ χMISO,d + o(1) (38)

2Note that asymptotically for E ↑ ∞, log
(

1 + log
(

1 + E

σ2

))

=

log log
(

E

σ2

)

+ o(1).
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Fig. 1. Nonasymptotic bounds (29) on the sum-rate of a two-user multiple-access Rician fading channel. The dotted line shows the capacity of an additive
Gaussian noise channel with equivalent received SNR. The red horizontal line corresponds to the fading number χ as derived in Section V, and the dashed
red line is the approximate threshold χ+ 2 nats between the efficient low-SNR and the highly inefficient high-SNR behavior.

where o(1) denotes terms that tend to zero as E tends to infinity

and where χMISO,d is a constant denoted MISO fading number.

Note that the value of χMISO,d is independent of whether we

have assumed an average-power or a peak-power constraint

and is given by [1, Corollary 4.28]

χMISO,d = log
(
‖d‖2

)
− Ei

(
−‖d‖2

)
− 1 (39)

where Ei (·) is defined in (31) and where d denotes the LOS

vector of the MISO Rician fading channel.

We further note that for any constant factor β

lim
E↑∞

{
log log(βE)− log logE

}
= 0, β > 0 (40)

i.e., the double-logarithmic growth is not influenced by the

factors κmin

m or κ̄ in Theorem 1. Therefore, we directly get

from (29), (38), and (40) the following result.

Corollary 4: The sum-rate capacity (15) of the multiple-

access Rician fading channel (3) under any one of the three

power constraints (11), (12), or (13), and irrespective of the

values of κ1, . . . , κm, grows double-logarithmically in the

power at high power:

lim
E↑∞

{

CMAC(E)− log log

(
E

σ2

)}

< ∞. (41)

We next step out to analyze the second term of the high-

SNR expansion of the sum-rate capacity: the MAC fading

number.

Definition 5: The MAC fading number is defined as

χMAC , lim
E↑∞

{

CMAC(E)− log

(

1 + log

(

1 +
E

σ2

))}

.

(42)

A priori χMAC depends on the type of power constraint (11),

(12), or (13) that is imposed on the input. However, it will

turn out that the value of the MAC fading number is identical

for all three cases. We therefore take the liberty to use a

slightly sloppy notation that does not specify the used power

constraint.

From (29), (38), and (40) we realize that

max
i

χMISO,di
≤ χMAC ≤ χMISO,d (43)

or explicitly (by (39))

max
i

{
log
(
‖di‖2

)
− Ei

(
−‖di‖2

)
− 1
}

≤ χMAC ≤ log
(
‖d‖2

)
− Ei

(
−‖d‖2

)
− 1 (44)

where we remind the reader that di is the LOS vector of user

i and d , (dT

1, . . . ,d
T

m)T is the stacked LOS vector of all

users.

Using the monotonicity of ξ 7→ log(ξ) − Ei (−ξ) − 1 we

now define dMAC ≥ 0 such that

χMAC = log
(
d2MAC

)
− Ei

(
−d2MAC

)
− 1. (45)

From (44) we know that

max
{
‖d1‖2, . . . , ‖dm‖2

}

≤ d2MAC ≤ ‖d‖2 = ‖d1‖2 + · · ·+ ‖dm‖2. (46)

In the remainder we will derive the exact value of dMAC.

We would like to point out that in [5] it has been proven

that for the two-user case m = 2 with n1 = n2 = 1 (and with

κ1 = κ2 = 1) the upper bound in (46) cannot be achieved,

i.e.,

d2MAC < ‖d‖2 (47)

with strict inequality.
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V. MAIN RESULT: THE MAC FADING NUMBER

Theorem 6: Consider a multiple-access Rician fading chan-

nel as defined in (3). Then, irrespective of which power

constraint (11), (12), or (13) is imposed on the input and

irrespective of the values of κ1, . . . , κm, the MAC fading

number χMAC (42) is given by

χMAC = log
(
d2MAC

)
− Ei

(
−d2MAC

)
− 1 (48)

with

d2MAC , max
{
‖d1‖2, . . . , ‖dm‖2

}
. (49)

This shows that the lower bound in (46) is tight, which is a

rather pessimistic result. It means that if the magnitude of the

LOS vector of one user is strictly larger than the LOS vectors

of the other users, then the asymptotic sum-rate capacity can

only be achieved if all but this strongest user are switched off

at all times. If there are several users with LOS vectors of

identical largest magnitude, the sum-rate capacity can also be

achieved by time sharing among those best users.

Note that the result holds even if we allow for power sharing

among the users.

VI. PROOF OF MAIN RESULT

The proof of Theorem 6 consists of two parts. The first

part is given already in Section IV: it is shown in (46) that

maxi ‖di‖2 is a lower bound to d2MAC. Note that this lower

bound can be achieved using an input that satisfies the strictest

constraint, i.e., the peak-power constraint (11).

The second part will be to prove that maxi ‖di‖2 also is an

upper bound to d2MAC. We will prove this under the assumption

of the slackest constraint, i.e., the power-sharing average-

power constraint (13). Since the peak-power constraint (11)

and the average-power constraint (12) are more stringent than

the power-sharing average-power constraint (13), the result

will follow.

Before we start with the actual derivation of this upper

bound, we need to generalize a concept that has been intro-

duced in [1] and [3].

Proposition 7 (Input Distributions that Escape to Infinity):

Let {QE}E>0 be a family of joint input distributions of the

multiple-access Rician fading channel (3), parametrized by

the available power E > 0, satisfying the power-sharing

average-power constraint (13), and satisfying

lim
E↑∞

I(QE)

log logE
= 1 (50)

where I(Q) denotes the mutual information between input and

output of this channel induced by the input distribution Q.

Then at least one user’s input distribution must escape to

infinity, i.e., for any fixed E0 > 0,

lim
E↑∞

QE

({

‖X1‖2 ≥ E0

m

}

∪ · · · ∪
{

‖Xm‖2 ≥ E0

m

})

= 1.

(51)

Proof: See Appendix C.

To put it in an engineering way, Proposition 7 says that in the

limit when the available power tends to infinity, at least one

user must use a coding scheme where every used symbol uses

infinite energy. Or in other words, if all users use one or more

symbols with finite energy, the asymptotic growth rate of the

sum-rate capacity cannot be achieved.

Definition 8: We define A to be the set of families of

joint input distributions of all users such that the users are

independent (7), such that the power-sharing average-power

constraint (13) is satisfied, and such that the input distribution

of at least one user escapes to infinity when the available power

E tends to infinity (51), i.e.,

A ,
{
{QX}E>0 : (7), (13), and (51) are satisfied

}
. (52)

We are now ready for the derivation of an upper bound on

the MAC fading number. The following bound is derived from

a duality-based bound on mutual information.

Lemma 9: The MAC fading number (42) is upper-bounded

as follows:

χMAC ≤ lim
E↑∞

sup
QE∈A

{

log

(

E

[ |dT
X|2

‖X‖2
])

−Ei

(

−E

[ |dT
X|2

‖X‖2
])

− 1

}

. (53)

Proof: See Appendix D.

Noting that ξ 7→ log(ξ) − Ei (−ξ) − 1 is a monotonically

increasing function and using our definition of dMAC in (45),

we hence conclude that

d2MAC ≤ lim
E↑∞

sup
QE∈A

E

[ |dT
X|2

‖X‖2
]

. (54)

We would like to point out that without the constraint (51)

the right-hand side (RHS) of (54) actually equals to ‖d‖2, i.e.,

to the RHS of (46), from which we already know that it is (at

least in some cases) strictly loose. So we see that the presented

generalization of the concept of input distributions that escape

to infinity (Proposition 7) is crucial to this proof.

We now continue as follows:

sup
QE∈A

E

[ |dT
X|2

‖X‖2
]

= sup
QE∈A

E

[∣
∣d

T

1X1 + · · ·+ d
T

mXm

∣
∣
2

‖X1‖2 + · · ·+ ‖Xm‖2

]

(55)

≤ sup
QE∈A

E

[ |dT

1X1|2 + · · ·+ |dT

mXm|2
‖X1‖2 + · · ·+ ‖Xm‖2

]

+
m∑

i=1

m∑

j=1
j 6=i

sup
QE∈A

E

[ |dT

iXi| · |dT

jXj |
‖X1‖2 + · · ·+ ‖Xm‖2

]

(56)

≤ sup
QE∈A

E

[‖d1‖2‖X1‖2 + · · ·+ ‖dm‖2‖Xm‖2
‖X1‖2 + · · ·+ ‖Xm‖2

]

+
m∑

i=1

m∑

j=1
j 6=i

sup
QE∈A

E

[ ‖di‖‖Xi‖‖dj‖‖Xj‖
‖X1‖2 + · · ·+ ‖Xm‖2

]

(57)

where in (56) we split the supremum into many separate

suprema, and where (57) follows from the Cauchy-Schwarz

inequality

|dT

iXi|2 ≤ ‖di‖2‖Xi‖2. (58)
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We next upper-bound the first term in (57) as follows:

sup
QE∈A

E

[‖d1‖2‖X1‖2 + · · ·+ ‖dm‖2‖Xm‖2
‖X1‖2 + · · ·+ ‖Xm‖2

]

≤ sup
r1,...,rm

{‖d1‖2r21 + · · ·+ ‖dm‖2r2m
r21 + · · ·+ r2m

}

(59)

= sup
r

r
T
D̃r

‖r‖2 (60)

= λmax(D̃) (61)

= max
{
‖d1‖2, . . . , ‖dm‖2

}
(62)

where we have defined the vector r , (r1, . . . , rm)T and the

matrix

D̃ , diag
(
‖d1‖2, . . . , ‖dm‖2

)
. (63)

The equality (61) follows from the Rayleigh-Ritz Theorem [6,

Theorem 4.2.2].

To address the remaining terms in (57) we note that by

definition of A in (52) at least one user’s input must escape to

infinity. Without loss of generality assume that X1 is among

them. Then we can separate the remaining terms in (57) into

two kinds:

sup
QE∈A

E

[ ‖d1‖‖di‖‖X1‖‖Xi‖
‖X1‖2 + · · ·+ ‖Xm‖2

]

, i ∈ {2, . . . ,m} (64)

and

sup
QE∈A

E

[ ‖di‖‖dj‖‖Xi‖‖Xj‖
‖X1‖2 + · · ·+ ‖Xm‖2

]

,

i, j ∈ {2, . . . ,m}, i 6= j. (65)

Our proof is concluded once we can show that

lim
E↑∞

sup
QE∈A

E

[ ‖d1‖‖di‖‖X1‖‖Xi‖
‖X1‖2 + · · ·+ ‖Xm‖2

]

= 0 (66)

lim
E↑∞

sup
QE∈A

E

[ ‖di‖‖dj‖‖Xi‖‖Xj‖
‖X1‖2 + · · ·+ ‖Xm‖2

]

= 0 (67)

for i, j ∈ {2, . . . ,m}, i 6= j.

We start with (66) and note that by dropping some terms in

the denominator we have

lim
E↑∞

sup
QE∈A

E

[ ‖d1‖‖di‖‖X1‖‖Xi‖
‖X1‖2 + · · ·+ ‖Xm‖2

]

≤ ‖d1‖‖di‖ lim
E↑∞

sup
QE∈A

E

[ ‖X1‖‖Xi‖
‖X1‖2 + ‖Xi‖2

]

. (68)

Next we define

E1 , E
[
‖X1‖2

]
(69)

and recall that if E ↑ ∞ then E1 ↑ ∞ by our assumption that

user 1 escapes to infinity. Note further that

r1ri
r21 + r2i

≤ 1

2
(70)

and that r1 7→ r1ri
r21+r2

i

is monotonically decreasing if r1 > ri.

Therefore, for an arbitrary choice of a > 1, we define the

set D as

D ,
{
x1 : 0 ≤ ‖x1‖ ≤ a‖xi‖

}
(71)

and bound

lim
E↑∞

sup
QE∈A

E

[ ‖X1‖‖Xi‖
‖X1‖2 + ‖Xi‖2

]

≤ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

E

[ ‖X1‖‖Xi‖
‖X1‖2 + ‖Xi‖2

]

(72)

= sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫ ‖x1‖‖xi‖
‖x1‖2 + ‖xi‖2

· dQX1
(x1) dQXi

(xi) (73)

≤ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈D

‖x1‖‖xi‖
‖x1‖2 + ‖xi‖2

· dQX1
(x1) dQXi

(xi)

+ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈Dc

‖x1‖‖xi‖
‖x1‖2 + ‖xi‖2
· dQX1

(x1) dQXi
(xi). (74)

Here in the first inequality (72) we define A1 as the set of all

input distributions of the first user that escape to infinity, and

take the supremum over all QXi
without any constraint on the

average power and no dependence on QX1
. The last inequality

(74) then follows from splitting the inner integration into two

parts and from the fact that the supremum of a sum is always

upper-bounded by the sum of the suprema.

Next, let’s look at the first term in (74) and use (70):

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈D

‖x1‖‖xi‖
‖x1‖2 + ‖xi‖2
︸ ︷︷ ︸

≤ 1
2

dQX1
(x1) dQXi

(xi)

≤ lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈D

1

2
dQX1

(x1) dQXi
(xi) (75)

≤ lim
E1↑∞

∫
(

sup
QX1

∈A1

1

2

∫

x1∈D

dQX1
(x1)

)

dQXi
(xi) (76)

=

∫

lim
E1↑∞

(

sup
QX1

∈A1

1

2

∫

x1∈D

dQX1
(x1)

)

dQXi
(xi) (77)

=

∫
(

lim
E1↑∞

sup
QX1

∈A1

1

2
Pr
[

‖X1‖ ≤ a‖xi‖
]
)

dQXi
(xi) (78)

=

∫

0 dQXi
(xi) = 0. (79)

Here, (75) follows from (70); the subsequent inequality (76)

follows by taking the supremum into the first integral which

can only enlarge the expression; in (77) we exchange limit

and integration which needs justification: define

gE1
(xi) , sup

QX1
∈A1

1

2

∫

x1∈D

dQX1
(x1) (80)

≤ sup
QX1

∈A1

1

2

∫

dQX1
(x1) (81)

=
1

2
, gupper(xi) (82)

and then note that
∫

gupper(xi) dQXi
(xi) =

∫
1

2
dQXi

(xi) =
1

2
(83)
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i.e., gupper(·) is independent of E1 and integrable. Thus, by the

Dominated Convergence Theorem [7] we are allowed to swap

limit and integration.

Finally, (79) follows from Proposition 7 because QX1

escapes to infinity.

Continuing with (74) we now have:

lim
E↑∞

sup
QE∈A

E

[ ‖X1‖‖Xi‖
‖X1‖2 + ‖Xi‖2

]

≤ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈Dc

‖x1‖‖xi‖
‖x1‖2 + ‖xi‖2
· dQX1

(x1) dQXi
(xi) (84)

≤ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈Dc

(
a‖xi‖

)
‖xi‖

(a‖xi‖)2 + ‖xi‖2
· dQX1

(x1) dQXi
(xi) (85)

= sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈Dc

a

a2 + 1

· dQX1
(x1) dQXi

(xi) (86)

≤ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫
a

a2 + 1
dQX1

(x1) dQXi
(xi) (87)

= sup
QXi

∫
a

a2 + 1
dQXi

(xi) (88)

=
a

a2 + 1
< ǫ (89)

for any ǫ > 0 if we choose a large enough. Here (85) follows

because r1 7→ r1ri
r21+r2

i

is monotonically decreasing if r1 > ri.

Since a > 1 is arbitrary, we obtain:

lim
E↑∞

sup
QE∈A

E

[ ‖X1‖‖Xi‖
‖X1‖2 + ‖Xi‖2

]

= 0. (90)

This proves (66).

To prove (67), we again drop some terms in the denomina-

tor:

E

[ ‖di‖‖dj‖‖Xi‖‖Xj‖
‖X1‖2 + · · ·+ ‖Xm‖2

]

≤ ‖di‖‖dj‖E

[ ‖Xi‖‖Xj‖
‖X1‖2 + ‖Xi‖2 + ‖Xj‖2

]

. (91)

We once more use definition (69) and note that

rirj
r21 + r2i + r2j

≤ r2i
r21 + 2r2i

≤ 1

2
(92)

and that r1 7→ r2i
r21+2r2

i

is monotonically decreasing.

For an arbitrary choice of a > 1, we use the set D from

(71) to derive

lim
E↑∞

sup
QE∈A

E

[ ‖Xi‖‖Xj‖
‖X1‖2 + ‖Xi‖2 + ‖Xj‖2

]

≤ sup
QXi

·QXj

lim
E1↑∞

sup
QX1

∈A1

∫∫∫ ‖xi‖‖xj‖
‖x1‖2 + ‖xi‖2 + ‖xj‖2

· dQX1
(x1) dQXi

(xi) dQXj
(xj) (93)

≤ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫ ‖xi‖2
‖x1‖2 + 2‖xi‖2

· dQX1
(x1) dQXi

(xi) (94)

≤ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈D

‖xi‖2
‖x1‖2 + 2‖xi‖2

· dQX1
(xm) dQXi

(xi)

+ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈Dc

‖xi‖2
‖x1‖2 + 2‖xi‖2
· dQX1

(xm) dQXi
(xi). (95)

Here in (93) we define A1 as the set of all input distribu-

tions such that the first user escapes to infinity, and take

the supremum over all joint distributions of QXi
and QXj

without any restriction on the average power. In the subsequent

inequality (94) we apply (92) to replace ‖xj‖ by ‖xi‖. In the

last inequality we split the inner integration into two parts

using (71).

For the first term in (95), we have

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈D

‖xi‖2
‖x1‖2 + 2‖xi‖2
︸ ︷︷ ︸

≤ 1
2

dQX1
(x1) dQXi

(xi)

≤ lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈D

1

2
dQX1

(x1) dQXi
(xi) (96)

= 0 (97)

where (97) follows from a derivation analogous to (75)–(79).

The second term in (95) can be bounded as follows:

sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈Dc

‖xi‖2
‖x1‖2 + 2‖xi‖2

· dQX1
(x1) dQXi

(xi)

≤ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈Dc

‖xi‖2
(a‖xi‖)2 + 2‖xi‖2
· dQX1

(x1) dQXi
(xi) (98)

≤ sup
QXi

∫
1

a2 + 2
dQXi

(xi) (99)

=
1

a2 + 2
< ǫ (100)

for any ǫ > 0 if we choose a large enough. Here in the

first inequality we use that r1 7→ r2i
r21+2r2

i

is monotonically

decreasing. Since a is arbitrary, this proves (67) and concludes

the proof.

VII. CONCLUSIONS

In this paper we have derived a new upper and lower

bound on the sum-rate capacity of a noncoherent memoryless

multiple-access Rician fading channel with m transmitters

(with a different number of antennas each) and one receiver

(with only one antenna). We have shown that while the sum-

rate capacity at low SNR behaves normally with a logarithmic

growth in the available power, at high SNR it is highly

power-inefficient and only grows double-logarithmically. It is

therefore advisable not to operate such a channel at high SNR.

These bounds rely on novel bounds on the capacity of a single-

user MISO Rician fading channel that are valid for any SNR.

In a second step we then derived the exact asymptotic high-

SNR expansion of the sum-rate capacity, which has the form

CMAC = log log

(
E

σ2

)

+ χMAC + o(1). (101)
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We have shown that this asymptotic sum-rate capacity is

limited by the asymptotic capacity of the user seeing the best

channel and can only be achieved if all users with a channel

that is strictly worse than the best channel are always switched

off and cannot communicate. Note that this should not be

confused with the idea of time sharing where at any given

time only one user is allowed to communicate. In the presented

setup, as long as the channel model does not change, the best

user will remain the best user, i.e., all other users can never

communicate.3 This very pessimistic result fits to the already

rather pessimistic double-logarithmic behavior and strengthen

the conviction that these channels should not be used at high

SNR, but only at low SNR where the channel will behave

normally like a coherent fading channel.

At first sight our results seems very similar to a result

by Knopp and Humblet [8], [9], [10], who showed that the

strategy of one user at a time also is optimal for the MAC

with full channel state information both at the transmitter and

receiver side. In [8] a continuous-time system is considered

and it is shown that if the transmitter and receiver have full

knowledge of the fading, then it is best if the users are assigned

separate frequency and time slots corresponding to best fading

realizations (orthogonal signaling). However, we would like to

point out that in this setup, each user can transmit regularly and

has a strictly nonzero average communication rate, while in

the channel model considered here, it turns out that optimally

most users have a zero transmission rate. So these two results

are not properly comparable.

We remark further that from the fact that the sum-rate

capacity is achieved in a corner where only one user has

positive rate, one can deduce that the asymptotic capacity

region has the shape of an m-dimensional simplex.

In the analysis of the channel we have allowed for many

different types of power constraints. We grouped them into

three categories: an individual peak-power constraint for each

user, an individual average-power constraint for each user, and

a combined power-sharing average-power constraint among all

users. The power-sharing constraint does not make sense in

a practical setup as it requires the users to share a common

battery, while their signals still are restricted to be independent.

However, the inclusion of this case helps with the analysis.

Moreover, it turns out that the pessimistic results described

above even hold if we allow for such power sharing.

Within a category of constraints, we do allow for different

power settings for different users as long as the constraints

scale linearly (see the constants κi and κ̄ in (11)–(13)). It

would be possible to extend the shown results to situations

where the power constraints among the different user differ

exponentially, i.e., if every user i is allowed to use a power

of at most
κi

m
E
ϑi

for some κi, ϑi > 0. In this case, however, ϑi will influence

the MAC fading number4 via an additive term log ϑi. This

3The only exception is if there are several users having the same best
channel. In this case these equivalent best users can use time sharing to
alternatively communicate.

4The double-logarithmic term in the asymptotic expansion will remain
unchanged.

then means that in the evaluation of the MAC fading number

(48) not only ‖di‖ is important, but also this additive term

log ϑi has to be taken into account.

While in this paper we have restricted the channel model

to be memoryless, a generalization to a fading process with

memory is possible. Again, one has to be careful as the

memory will influence the MAC fading number and thereby

affect the search for the best channel.

As already discussed in Section III-C, we would like to

emphasize once more that the analysis of the asymptotic sum-

rate capacity of this channel is of practical interest in spite

of the fact that we will not use the channel at high SNR.

The reason is that the MAC fading number χMAC is a good

indicator for the threshold between the efficient low-SNR and

the highly inefficient high-SNR regime. As a rule of thumb, the

MAC Rician fading channel can be used up to a sum-rate of

about χ+2 nats (see Figure 1 for an example). It is ominous

that the fading number—and ergo also the threshold—does

not vary with the type of the used power constraint. This

means that once a sum rate of around χ+ 2 nats is achieved,

the channel behavior will become very poor and cannot be

improved by any optimization of the power allocation. Instead

the system has to be changed in a more fundamental fashion

in order to achieve a change in the channel model.

An important clue to the derivations is a generalization of

the concept of input distributions that escape to infinity. To

put it in engineering words, the concept says that one cannot

achieve the sum-rate capacity asymptotically unless at least

one of the users always uses input symbols of infinite power.

Note that while we have stated this concept here specifically

for the multiple-access Rician fading channel at hand, it can

be further extended to more general multiple-user channels.

APPENDIX A

UPPER BOUND ON MISO RICIAN FADING CAPACITY

The upper bound (30) on the MISO Rician fading channel

(20) is a generalization of an upper bound on the SISO Rician

fading channel presented in [1, Eq. (166)]. It is based on a

duality-based upper bound on the mutual information taken

from [1, Eq. (25)]:

I(X;Y ) ≤ −h(Y |X) + log π + α log β + log Γ

(

α,
ν

β

)

+ (1− α)E
[
log
(
|Y |2 + ν

)]
+

1

β
E
[
|Y |2

]
+

ν

β
(102)

where α, β > 0 and ν ≥ 0 are free parameters.

We start with an upper bound on the fifth term on the RHS

of (102). To that goal we assume 0 < α < 1 such that 1−α >
0 and define

ǫν , sup
x

{

E
[
log
(
|Y |2 + ν

) ∣
∣ X = x

]

− E
[
log |Y |2

∣
∣ X = x

] }

(103)
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such that

(1− α)E
[
log
(
|Y |2 + ν

)]

= (1− α)E
[
log |Y |2

]

+ (1− α)
(
E
[
log
(
|Y |2 + ν

)]
− E

[
log |Y |2

])
(104)

≤ (1− α)E
[
log |Y |2

]

+ (1− α) sup
x

{

E
[
log
(
|Y |2 + ν

) ∣
∣ X = x

]

− E
[
log |Y |2

∣
∣ X = x

] }

(105)

= (1− α)E
[
log |Y |2

]
+ (1− α)ǫν . (106)

Next we apply (102) to the MISO Rician fading channel

(20). We note that conditional on X = x

Y ∼ NC

(
d

T
x, ‖x‖2 + σ2

)
(107)

and compute

h(Y |X = x) = log π + 1 + log
(
‖x‖2 + σ2

)
(108)

E
[
|Y |2

∣
∣ X = x

]
= |dT

x|2 + ‖x‖2 + σ2 (109)

and

E
[
log |Y |2

∣
∣ X = x

]

= log

( |dT
x|2

‖x‖2 + σ2

)

− Ei

(

− |dT
x|2

‖x‖2 + σ2

)

+ log(‖x‖2 + σ2) (110)

ǫν = sup
x

E

[

log

(

1 +
ν

|Y |2
) ∣
∣
∣
∣
X = x

]

(111)

= E

[

log

(

1 +
ν

|Y |2
) ∣
∣
∣
∣
X = 0

]

(112)

= log
( ν

σ2

)

− eν/σ
2

Ei
(

− ν

σ2

)

+ γ. (113)

Here, in (110) we evaluate the expected logarithm of a

noncentral chi-square random variable as derived in [11], [1,

Lemma 10.1], [12, Lemma A.6]; and (112) follows from

a stochastic ordering argument by noting that the function

ξ 7→ log
(
1 + 1

ξ

)
is monotonically decreasing and that the

distribution of Y conditional on X = x is stochastically larger

than the distribution of Y conditional on X = 0 [1, Sec. IV.B].

The final step (113) follows by a direct calculation.

Plugging (106) and (108)–(113) into (102) then yields

I(X;Y )

≤ −1 + α log β − αE
[
log
(
‖X‖2 + σ2

)]
+ log Γ

(

α,
ν

β

)

+
E
[
‖X‖2 + σ2 + |dT

X|2
]

β
+

ν

β

+ (1− α)

(

E

[

log

( |dT
X|2

‖X‖2 + σ2

)

− Ei

(

− |dT
X|2

‖X‖2 + σ2

)]

+ ǫν

)

(114)

≤ −1 + α log

(
β

σ2

)

+ log Γ

(

α,
ν

β

)

+
E
[
‖X‖2

]
+ σ2 + ‖d‖2E

[
‖X‖2

]

β
+

ν

β

+ (1− α)

(

log

(

‖d‖2E
[
‖X‖2

]

E[‖X‖2] + σ2

)

− Ei

(

−‖d‖2E
[
‖X‖2

]

E[‖X‖2] + σ2

)

+ ǫν

)

(115)

where for the last step we have lower-bounded

E
[
log
(
‖X‖2 + σ2

)]
≥ log σ2; used the monotonicity

of ξ 7→ log(ξ) − Ei (−ξ) together with the Cauchy-Schwarz

inequality (58); and applied Jensen’s inequality to the concave

function

ξ 7→ log

( ‖d‖2ξ
ξ + σ2

)

− Ei

(

− ‖d‖2ξ
ξ + σ2

)

. (116)

The upper bound (30) now follows from the average-power

constraint (21).

APPENDIX B

LOWER BOUND ON MISO RICIAN FADING CAPACITY

The first lower bound (34) on the capacity of the MISO

Rician fading channel (26) with peak-power constraint (27)

is based on the following lemma that has been proven in [1,

Lemma 4.9].

Lemma 10 ([1]): Let the random vector X take value in

C
nT and satisfy

Pr
[
‖X‖2 ≥ x2

min

]
= 1 (117)

for some xmin > 0. Let H be a random nR × nT matrix

having finite entropy h(H) > −∞ and finite expected squared

Frobenius norm E
[
‖H‖2F

]
< ∞. Let Z ∼ NC

(
0, σ2

I
)

and

assume that X, H, and Z are independent. Then

I(X;HX+ Z)

≥ I(X;HX)− sup
‖x̂‖=1

{

h

(

Hx̂+
Z

xmin

)

− h(Hx̂)

}

. (118)

We apply this lemma to the situation of the MISO Rician

fading channel (26) and choose the following distribution on

Xi:

Xi , R · di

‖di‖
eiΦ (119)

where Φ and R are statistically independent, Φ is uniform

between 0 and 2π, Φ ∼ U ([0, 2π)), and R is such that

logR2 ∼ U ([logΥ0, logΥ]) (120)

for some fixed Υ0. This choice satisfies the peak-power

constraint (27) and also

Pr
[
‖Xi‖2 ≥ Υ0

]
= 1. (121)

Hence by Lemma 10, we get

CMISO,pp,di
(Υ)

≥ I(Xi;d
T

iXi +H
T

iXi + Z) (122)

≥ I(Xi;d
T

iXi +H
T

iXi)

− sup
‖x̂‖=1

{

h

(

d
T

ix̂+H
T

ix̂+
Z√
Υ0

)

− h(dT

ix̂+H
T

ix̂)

}

(123)

= I(Xi;d
T

iXi +H
T

iXi)− log

(

1 +
σ2

Υ0

)

. (124)
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We introduce a random variable

H̃ , H
T

i ·
di

‖di‖
eiΦ ∼ NC(0, 1) (125)

and rewrite the first term on the RHS of (124) as follows:

I(Xi;d
T

iXi +H
T

iXi)

= h(dT

iXi +H
T

iXi)− h(dT

iXi +H
T

iXi|Xi) (126)

= h(‖di‖eiΦR+ H̃R)− E
[
log
(
πe‖Xi‖2

)]
(127)

= h
(∣
∣‖di‖eiΦR+ H̃R

∣
∣
2
)

− 1− E
[
logR2

]
(128)

≥ h
(

R2 ·
∣
∣‖di‖eiΦ + H̃

∣
∣
2
∣
∣
∣Φ, H̃

)

− 1− E
[
logR2

]
(129)

= h
(
R2
)
+ E

[

log
∣
∣‖di‖eiΦ + H̃

∣
∣
2
]

− 1

− E
[
logR2

]
. (130)

Here, (128) follows from the fact that for a circularly sym-

metric random variable U we have [1, Lemma 6.16]

h(U) = h
(
|U |2

)
+ log π. (131)

In (129) we condition the differential entropy which cannot

increase its value; and (130) follows from the scaling property

of differential entropy [13, Th. 8.6.4].

Next, we again evaluate the expected logarithm of a non-

central chi-square random variable [11], [1, Lemma 10.1], [12,

Lemma A.6]:

E

[

log
(∣
∣‖di‖eiΦ + H̃

∣
∣
2
)]

= E

[

log
(∣
∣‖di‖+ H̃

∣
∣
2
)]

(132)

= log
(
‖di‖2

)
− Ei

(
−‖di‖2

)
(133)

(where the first equality follows because H̃ is circularly

symmetric) and use the following identity [1, Lemma 6.15]:

h
(
logR2

)
= h

(
R2
)
− E

[
logR2

]
. (134)

The lower bound (34) now follows by plugging (130), (133),

and (134) into (124) and noting that because of (120)

h
(
logR2

)
= log log

(
Υ

Υ0

)

. (135)

The second lower bound (35) follows from (122) with the

choice (32):

CMISO,pp,di
(Υ)

≥ h(dT

iXi +H
T

iXi + Z)− h(dT

iXi +H
T

iXi + Z|Xi) (136)

= h(dT

iXi +H
T

iXi + Z)− E
[
log
(
πe(‖X‖2 + σ2)

)]
(137)

= h(R2
i )− 1− p log(Υ + σ2)− (1− p) log σ2. (138)

Here in the last step we have used (131) together with the fact

that

d
T

iXi +H
T

iXi + Z
L

= ‖di‖
√
ΥeiΦΞ +

√
ΥH̃Ξ + Z (139)

L

=
(

‖di‖
√
ΥΞ+

√
ΥH̃Ξ + Z

)

eiΦ (140)

L

=
∣
∣
∣‖di‖

√
ΥΞ+

√
ΥH̃Ξ + Z

∣
∣
∣

︸ ︷︷ ︸

,Ri

eiΦ (141)

where “
L

=” denotes “equal in probability law.” Hence, we

see that d
T

iXi + H
T

iXi + Z is circularly symmetric with a

magnitude Ri that, conditional on Ξ = 0, is Rayleigh and,

conditional on Ξ = 1, Rician distributed. The probability

density function of R2
i is given by (36).

APPENDIX C

PROOF OF PROPOSITION 7

Fix some E0 > 0 and let

U ,

{

1 if ∃ i : ‖Xi‖2 ≥ E0

m

0 if ‖Xi‖2 < E0

m , ∀ i. (142)

Further we define

µ , Pr[U = 1] . (143)

To prove Proposition 7, we need to show that

lim
E↑∞

µ = 1. (144)

To that goal, note the following:

I(QE) = I(X1, . . . ,Xm;Y ) (145)

= I(X1, . . . ,Xm, U ;Y ) (146)

= I(U ;Y ) + I(X1, . . . ,Xm;Y |U) (147)

= I(U ;Y ) + I(X1, . . . ,Xm;Y |U = 0)Pr[U = 0]

+ I(X1, . . . ,Xm;Y |U = 1)Pr[U = 1] (148)

≤ log 2 + I(X1, . . . ,Xm;Y |U = 0)

+ µI(X1, . . . ,Xm;Y |U = 1) (149)

≤ log 2 + CMISO,av,d(E0) + µCMISO,av,d

(
κ̄E

µ

)

. (150)

Here (149) follows because U is a binary random variable and

because Pr[U = 0] ≤ 1. To justify the subsequent inequality

(150), we note that because conditional on U = 0, ‖Xi‖2 <
E0

m for all i, i.e.,

E

[
m∑

i=1

‖Xi‖2
∣
∣
∣
∣
∣
U = 0

]

≤ E0 (151)

we can upper-bound the MAC situation by full-cooperation

MISO:

I(X1, . . . ,Xm;Y |U = 0) ≤ CMISO,av,d(E0). (152)

Moreover, by total expectation,

E

[
m∑

i=1

‖Xi‖2
]

= µE

[
m∑

i=1

‖Xi‖2
∣
∣
∣
∣
∣
U = 1

]

+ (1− µ)E

[
m∑

i=1

‖Xi‖2
∣
∣
∣
∣
∣
U = 0

]

︸ ︷︷ ︸

≥0

(153)

≥ µE

[
m∑

i=1

‖Xi‖2
∣
∣
∣
∣
∣
U = 1

]

(154)

from which follows that

E

[
m∑

i=1

‖Xi‖2
∣
∣
∣
∣
∣
U = 1

]

≤ E
[∑m

i=1 ‖Xi‖2
]

µ
≤ κ̄E

µ
(155)
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and hence, again allowing full-cooperation,

I(X1, . . . ,Xm;Y |U = 1) ≤ CMISO,av,d

(
κ̄E

µ

)

. (156)

Next, let En be a sequence with En ↑ ∞, let {QEn
}n be

a family of joint input distributions for the multiple-access

Rician fading channel (3) such that

lim
n↑∞

I(QEn
)

log logEn
= 1 (157)

and define

µn , QEn

({

‖X1‖2 ≥ E0

m

}

∪ · · · ∪
{

‖Xm‖2 ≥ E0

m

})

.

(158)

By contradiction, assume µn → µ∗ < 1. Then there must exist

some µ0 < 1 such that

µn < µ0, n sufficiently large. (159)

From (150) we have

I(QEn
)

log log En
︸ ︷︷ ︸

→1

≤ log 2 + CMISO,av,d(E0)

log logEn
︸ ︷︷ ︸

→0

+
CMISO,av,d

(
κ̄
µn

En

)

log log
(

κ̄
µn

En

)

︸ ︷︷ ︸

→1

·
µn log log

(
κ̄
µn

En

)

log log En
. (160)

Here the limiting behavior of the left-hand side (LHS) follows

from (157); the limiting behavior of the first term on the RHS

is because CMISO,av,d(E0) < ∞; the second term on the RHS

tends to one because En ↑ ∞ implies κ̄En/µn ↑ ∞ and

because of (38). Hence, when n ↑ ∞ we obtain

1 ≤ lim
n↑∞

µn log log
(

κ̄
µn

En

)

log log En
(161)

≤ lim
E↑∞






sup

µ∈(0,µ0]

µ log log
(

κ̄
µE

)

log logE






(162)

where the first inequality follows from (160) and the second

inequality follows from (159). This, however, is a contradiction

to the fact that

lim
E↑∞






sup

µ∈(0,µ0]

µ log log
(

κ̄
µE

)

log log E






< 1, ∀ 0 < µ0 < 1.

(163)

Hence, we must have that µn → 1, which proves the claim.

APPENDIX D

PROOF OF LEMMA 9

The derivation of this result is based on (114). We start by

bounding the following expressions:

E
[
log
(
‖X‖2 + σ2

)]
≥ log σ2 (164)

E
[
‖X‖2 + σ2 + |dT

X|2
]
≤ κ̄E+ σ2 + ‖d‖2κ̄E (165)

(1− α)ǫν ≤ ǫν (166)

and

E

[

log

( |dT
X|2

‖X‖2 + σ2

)

− Ei

(

− |dT
X|2

‖X‖2 + σ2

)]

≥ −γ. (167)

Here (165) follows from Cauchy-Schwarz (58) and the fact

that the input needs to satisfy the power-sharing average-power

constraint (13); and (167) follows because log ξ − Ei (−ξ) ≥
−γ where γ ≈ 0.57 denotes Euler’s constant.

Plugging these bounds into (114) and applying once more

Jensen’s inequality to ξ 7→ log ξ − Ei (−ξ) now yields

I(X;Y ) ≤ log

(

E

[ |dT
X|2

‖X‖2
])

− Ei

(

−E

[ |dT
X|2

‖X‖2
])

− 1

+ α
(
log β − log σ2 + γ

)
+ log Γ

(

α,
ν

β

)

+ ǫν

+
ν

β
+

1

β

(
(1 + ‖d‖2)κ̄E+ σ2

)
. (168)

We will now make the following choices of the free param-

eters α and β:

α ,
ν

log ((1 + ‖d‖2)κ̄E+ σ2)
(169)

β ,
1

α
e

ν
α (170)

for some constant ν ≥ 0. This leads to the following asymp-

totic behavior:

lim
E↑∞

{

log Γ

(

α,
ν

β

)

− log

(
1

α

)}

= log
(
1− e−ν

)
(171)

lim
E↑∞

α
(
log β − log σ2 + γ

)
= ν (172)

lim
E↑∞

{
1

β

(
(1 + ‖d‖2)κ̄E+ σ2

)
+

ν

β

}

= 0 (173)

and

lim
E↑∞

{

log

(
1

α

)

− log

(

1 + log

(

1 +
E

σ2

))}

= − log ν. (174)

(Compare with [1, Appendix VII], [12, Sec. B.5.9].)

Hence, using the definition of the MAC fading number

(42) and the definition of the sum-rate capacity (15), we

have derived the following upper bound on the MAC fading

number:

χMAC

= lim
E↑∞

{

CMAC(E)− log

(

1 + log

(

1 +
E

σ2

))}

(175)

= lim
E↑∞







sup
QX

independent users
power constraint (13)

I(X;Y )

− log

(

1 + log

(

1 +
E

σ2

))







(176)

= lim
E↑∞

{

sup
QE∈A

I(X;Y )− log

(

1 + log

(

1 +
E

σ2

))}

(177)
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≤ lim
E↑∞

{

sup
QE∈A

{

log

(

E

[ |dT
X|2

‖X‖2
])

− Ei

(

−E

[ |dT
X|2

‖X‖2
])

− 1

}

+ α
(
log β − log σ2 + γ

)
+ log Γ

(

α,
ν

β

)

+ ǫν

+
ν

β
+

1

β

(
(1 + ‖d‖2)κ̄E+ σ2

)

− log

(

1 + log

(

1 +
E

σ2

))}

(178)

= lim
E↑∞

sup
QE∈A

{

log

(

E

[ |dT
X|2

‖X‖2
])

− Ei

(

−E

[ |dT
X|2

‖X‖2
])

− 1

}

+ ǫν + ν + log
(
1− e−ν

)
− log ν. (179)

Here, in (177) we make use of Proposition 7; (178) follows

from (168); and the last equality is due to (171)–(174).

By letting ν tend to zero which makes sure that ǫν → 0 (as

can be seen from (103) and (113)) the claim follows.

ACKNOWLEDGMENTS

Many fruitful discussions with Amos Lapidoth are grate-

fully acknowledged. The authors are also indebted to the

anonymous reviewers for their inspiring comments.

REFERENCES

[1] A. Lapidoth and S. M. Moser, “Capacity bounds via duality with
applications to multiple-antenna systems on flat fading channels,” IEEE

Trans. Inf. Theory, vol. 49, no. 10, pp. 2426–2467, Oct. 2003.

[2] S. M. Moser, “The fading number of memoryless multiple-input
multiple-output fading channels,” IEEE Trans. Inf. Theory, vol. 53, no. 7,
pp. 2652–2666, Jul. 2007.

[3] A. Lapidoth and S. M. Moser, “The fading number of single-input
multiple-output fading channels with memory,” IEEE Trans. Inf. Theory,
vol. 52, no. 2, pp. 437–453, Feb. 2006.

[4] S. M. Moser, “The fading number of multiple-input multiple-output
fading channels with memory,” IEEE Trans. Inf. Theory, vol. 55, no. 6,
pp. 2716–2755, Jun. 2009.

[5] A. Lapidoth and S. M. Moser, “On the Ricean fading multi-access
channel,” in Proc. Winter School Cod. and Inf. Theory, Monte Verità,
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