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Abstract—The sum-rate capacity of a noncoherent memory-
less multiple-access Rician fading channel is investigated under
three different categories of power constraints: individual per
user peak-power constraints, individual per user average-power
constraints, or a global power-sharing average-power constraint.
Upper and lower bounds on the sum-rate capacity are derived,
and it is shown that at high signal-to-noise ratio the sum-
rate capacity only grows double-logarithmically in the available
power. The asymptotic behavior of capacity is then analyzed in
detail and the exact asymptotic expansion is derived including
its second term, the so called fading number. 1t is shown that the
fading number is identical to the fading number of the single-user
Rician fading channel that is obtained when only the user seeing
the best channel is transmitting and all other users are switched
off at all times. This pessimistic result holds independently of the
type of power constraint that is imposed.

Index Terms—Channel capacity, escaping to infinity, fading
number, high signal-to-noise ratio (SNR), multiple-access channel
(MAC), multiple-input single-output (MISO), multiple users,
noncoherent detection, Rician fading, sum-rate capacity.

I. INTRODUCTION

In a noncoherent fading channel where neither transmitter
nor receiver know the fading realization, it has been shown
in [1] that the capacity at high signal-to-noise ratio (SNR)
behaves fundamentally differently from the usual asymptotics
seen in Gaussian channels or in coherent fading channels:
instead of a logarithmic growth in the SNR, the capacity
only grows double-logarithmically. To be precise, if the fading
process is stationary, ergodic, and has a finite differential
entropy rate and a finite expected second moment, then we
have

C(SNR) = log(1 + log(1 4+ SNR)) + x + o(1) (1)

where o(1) denotes terms that tend to zero as the SNR tends
to infinity; and where x is a constant independent of the
SNR that is called fading number. The value of x depends
on the exact specifications of the fading law. In the situation
of a general memoryless fading process, i.e., a fading process
that is independent and identically distributed (IID) over time
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and of a general law, the fading number has been derived
for a single-input single-output (SISO) channel, a single-input
multiple-output (SIMO) channel, and a multiple-input single-
output (MISO) channel in [1], and the multiple-input multiple-
output (MIMO) channel was solved in [2]. The more general
setup of a stationary, ergodic and regular fading process has
been analyzed in [1] for the SISO case, [3] solved the SIMO
case, and the most general MIMO case was addressed in [4].

Note that even though the fading number is defined only
in the limit when the available SNR tends to infinity, it
has practical relevance also for finite SNR: it is a good
estimator for the threshold where the capacity changes from
the normal logarithmic growth to the highly inefficient double-
logarithmic growth. For more details we refer to the discussion
in Section III-C and to the introduction section in [4].

All the above mentioned results are restricted to the situation
of a single transmitter (possibly with several antennas) and
a single receiver. The present work is a first step towards
generalizing the setup to a multiple-user situation. Concretely,
we include m transmitters, each having a certain number n;
of antennas and trying to communicate to a common receiver
with only one antenna. The fading law is assumed to be
memoryless both over time and space and Gaussian distributed
with line-of-sight (LOS) components. We will propose upper
and lower bounds on the sum-rate capacity of this channel
and derive the exact asymptotic expansion of the sum-rate
capacity for the SNR tending to infinity. It will turn out that
the asymptotic capacity corresponds to the single-user capacity
for the case when all but one user are switched off at all times.

The remainder of this paper is structured as follows. After
some short remarks about notation we will introduce the mul-
tiple-access (MAC) Rician fading channel and three different
power constraints in Section II. In Section III we will derive
upper and lower bounds on the sum-rate capacity of this model
that are valid for all SNR. These bounds are based on new
bounds for the single-user MISO Rician fading channel. We
will see there that in contrast to the low-SNR regime, at high
SNR the capacity only grows double-logarithmically in the
power.

To investigate the threshold between these two regimes, in
Sections IV and V the asymptotic behavior of the sum-rate
capacity will be analyzed and stated exactly. The proof of the
main result can be found in Section VI, while the derivations
of some intermediate steps have been moved to the appendices.
We conclude in Section VII.

We try to clearly distinguish random and constant quantities:
while random quantities are denoted by capital Roman letters,
constants are typeset in small Romans or the Greek alphabet.
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To distinguish numbers from vectors, vectors are in bold face.
E.g., X denotes a random vector and x its realization, while
Y is a random variable and y its realization.

There are a few exceptions to this rule. As is customary
we use capital letters to denote matrices, however, in order to
be able to distinguish them from random variables we use a
different font: D. Moreover, C stands for capacity, E for the
available power, I denotes the mutual information functional,
and () is a cumulative distribution function (CDF) of the
channel input.

The superscript T refers to the transpose operation of vectors
and matrices. We use || - || to denote the Euclidean norm of
vectors. Sets are set in calligraphic font D, and D¢ denotes
the complement set.

All rates specified in this paper are in nats per channel use,
i.e., log(:) denotes the natural logarithmic function.

II. CHANNEL MODEL AND POWER CONSTRAINTS

We consider a multiple-access channel with m transmitters
(users) and one receiver. The signals transmitted by the users
are assumed to be independent. The receiver is assumed to
have only one antenna, whereas each user ¢ has some number

n; of transmit antennas, ¢ = 1,...,m, which yields a total
number of antennas at the transmitter side of
m
nr £ n. )
i=1

All channels between one of the nr transmit antennas
and the receiver antenna are assumed to be memoryless and
independent Rician fading channels, i.e., the fading is complex
Gaussian distributed with variance 1 and some mean (line-of-
sight component) dl(-e) € C. Note that in the following we will
use ¢ (and sometimes 7) to denote the users, i.e.,7 =1,...,m,
and ¢ to denote the antennas of user 4, i.e., £ =1,...,n;.

To simplify our notation and because we assume all chan-
nels to be IID over time, we restrain ourselves from using
time indices. We would like to point out that the assumption
of memorylessness has been made for simplicity. We believe
it is possible to extend the results to fading with memory (see
also the discussion in Section VII).

So the channel output Y € C can be written as

Y =) (d] +H))x; + Z 3)
i=1
m Mg
= (@ + 22" + 2. 4)
=1/4=1

Here x; € C™ denotes the input vector for the n; antennas of
user ¢; the components of the random vector d; +H; describe
Rician fading

HY +d ~ Ne (d,ﬁ“, 1) (5)

¢ . . .
(hence, HZ( ) are zero-mean, unit-variance, circularly symmet-
ric, complex Gaussian random variables) and are assumed to
be independent

HOLHS ()£ (0, 0) ©)

and Z ~ AN¢ (07 02) denotes additive, zero-mean, circu-
larly symmetric Gaussian noise, independent from the fading
(Hy,...,H,,).

We assume a noncoherent situation, i.e., neither transmitters
nor receiver have knowledge of the current fading realization,
they only know the fading distributions.! Note that we do
not restrict the receiver and/or transmitters to try to gain such
knowledge. Any power or bandwidth used for such estimation
schemes, however, are taken into account for the capacity
analysis and are not given for free as in a coherent setup.
Neither will it be possible for the receiver to gain perfect
channel knowledge.

We do not allow cooperation between the users, i.e., we
assume that the input vectors of the different users are statis-
tically independent:

XL X;, i#]j. (7

We also mention for completeness that the users’ input vectors
are assumed to be independent from fading and noise.

For simplicity of notation we will sometimes collect all LOS
vectors d; into one nt-vector d:

d=(dj,...,d})" (8

m

the fading vectors H; into one fading vector H of length nr:
H= (H,... . H],) ©9)

and the input vectors X; of all users into one nr-vector X:
X & (X, X)) (10)

In the given setup we can consider several possible con-
straints on the power. We will analyze three different scenarios:
o Peak-Power Constraint: At every time-step every user
i is allowed to use a power of at most ~*E:
PI‘[HXz‘H? > ﬁE} ) a1
m

for some fixed number x; > 0.
o Average-Power Constraint: Averaged over the length of
a codeword, every user ¢ is allowed to use a power of at

most T+E:

E[IX)%) < 2 (12)

m
for some fixed number x; > 0.

o Power-Sharing Average-Power Constraint: Averaged
over the length of a codeword all users together are
allowed to use a power of at most KE:

m

E|D IX:l?| <&E

i=1

13)

for some fixed number 5 > 0.

Note that if x; = 1 for all 7, we have the special case where
all users have an equal power available. Also note that in (11)
and (12) we have normalized the power to the number of
users m. This might be strange from an engineering point of
view; however, in regard of our freedom to choose k;, it is

INote that the constant line-of-sight (LOS) vectors d; are part of the
distributions and are, therefore, known everywhere.
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irrelevant, and it simplifies our analysis because we can easily
connect the power-sharing average-power constraint with the
other two constraints. Indeed, if we define % to be the average
of the constants {x;}7,, i.e.,

(14)

then the three constraints are in order of strictness: the peak-
power constraint is the most stringent of the three constraints
in the sense that if (11) is satisfied for all + = 1,...,m, then
the other two constraints are also satisfied; and the average-
power constraint is the second most stringent in the sense
that if (12) is satisfied for all ¢, then also the power-sharing
average-power constraint (13) is satisfied. In the remainder of
this paper we will always assume that (14) holds.

For some comments about even more general types of power
constraints, we refer to the discussion in Section VII.

It is worth mentioning that the slackest constraint, i.e., the
power-sharing average-power constraint, implicitly allows a
form of cooperation: while the users are still assumed to be
statistically independent, we do allow cooperation concerning
power distribution. This is not very realistic, however, we
include it anyway because it will help in deriving bounds on
the sum-rate capacity. As a matter of fact, it will turn out that
the asymptotic sum-rate capacity is unchanged irrespective of
which constraint is assumed.

The sum-rate capacity Cyac(E) of the channel (3) is given
by

CMAC(E) = I(Xl,...,Xm;Y)

sup (15)

Qx, Q.
power constraint
where the supremum is over the set of all probability distribu-
tions of the m input vectors such that the users are statistically
independent of each other (7), and such that one particular
power constraint (11), (12), or (13) is satisfied.

III. NONASYMPTOTIC BOUNDS ON THE SUM-RATE
CAPACITY

A. Relationship between MAC and MISO

We derive an upper and a lower bound on the sum-rate
capacity (15) by properly changing the setup to a single-user
situation.

Firstly, we upper-bound Cymac(E) by dropping the indepen-
dence-constraint (7), i.e., allowing full cooperation among all
users. Moreover, we choose the most relaxed power constraint
(13):

CMAC(E) = I(X1,7Xm,Y) (16)

sup
Qx,Qxp,

power constraint

[(Xy,.... XmY) (17)

INA
w
o
ol

E[Xm, IX:)1°]<RE

= sup I(X;Y) (13)

Qx
E[IIX|]*]<RE

= Cmisoavd (RE). (19)

Here Cwmisoavda(Y) denotes the (single-user) capacity of the

MISO Rician fading channel with ny transmitter antennas (and
one receiver antenna)

Y=dx+Hx+ 7 (20)

(where d, H, and x are defined in (8), (9), and (10), respec-

tively) under the average-power constraint

E[IX]*] <. 1)

On the other hand, obviously the sum rate cannot be smaller

than the single-user rate that can be achieved if all but one user

are switched off, assuming the most stringent type of power
constraint (11), and assuming the minimal amount of power

among all users. Le., for an arbitrary ¢ € {1,...,m},
CMAC(E) = sup I(Xh e ,Xm; Y) (22)
@xy Q%
power constraint
> sup I(Xi,.., Xy V) (23)
Q% Qxp, >§-f,50.*
Pr]|[ X [|>> “min €] =0, v a7
= sup I(X;;Y) (24)
Qx,
Prf[| X ;> > “min E] =0
P
= Cwmiso,pp.d, (ﬂE) . (25)
m

Here, Cwisopp.a, (T) denotes the (single-user) capacity of the
MISO Rician fading channel with n; transmitter antennas (and
one receiver antenna)

Y = d;Xl + H;Xi +Z (26)
under the peak-power constraint
Pr[[|X;]* > 1] =0 27)
and we define
Fmin = min  K;. (28)
ie€{l,...,m}

Hence, we have the following first important result.

Theorem 1: The sum-rate capacity (15) of the multiple-
access Rician fading channel (3) under one of the three power
constraints (11), (12), or (13) is bounded as follows:

o
max CMis0,pp.d; ( ;;:n F—) < Cwmac(E) € Cwmiso.avd (RE).
(29)

B. Bounds on Capacity of MISO Rician Fading Channel

In order to be able to derive more explicit bounds on the
MAC sum-rate capacity, we make a small detour and develop
some bounds on the MISO Rician fading channel. We start
with an upper bound, which is a generalization of a bound
from [1], based on a dual expression of mutual information.
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Proposition 2: The capacity of the MISO Rician fading
channel (20) under an average-power constraint (21) is upper-
bounded as follows:

Cmiso,ava(Y)
< inf
0<a<l

{alog (i) —1+1logl (a, V)
o B
£>0,0>0

N (Id]|? + 1Y + o2
d]*T
T + o2

v

B El
+(1—-a) <10g <Td_!—|2(;fz> —Ei (_

7) } (30)

where Ei (-) denotes the exponential integral function

+(1-a) <log (%) —e-2 Ei (—%) +

—t

El(_g)é_/gooetdtv

and where 7y ~ 0.57 denotes Euler’s constant.
Proof: See Appendix A. |

In order to be able to apply any lower bound on the MISO
Rician fading channel to Theorem 1, we need to consider a
peak-power constraint instead of an average-power constraint.
We will derive two different lower bounds. The first bound
relies on an input chosen such that the logarithm of its magni-
tude is uniformly distributed in the interval [% log Yo, % log T]
for some constant 0 < Yo < Y.

The second lower bound is based on a binary input

X; 2V B e
IId I°

£€>0 31)

(32)

with Pr[E =1] = 1 — Pr[E = 0] = p and ® (independent of
E) being uniform between 0 and 2w, ® ~ U ([0,27)). The
induced mutual information is then computed numerically.

Proposition 3: The capacity of the MISO Rician fading
channel (26) under a peak-power constraint (27) is lower-
bounded as follows:

CMISO,pp,d,;(T) Z COl’lV.-hull{ max{CLLd ( CLZd }}
(33)
where
CrLia,(Y)
T
N s (1.2
2 e {togton () +1ox (1a01%) - B (- ailP)
2
—1—log (1+To>} (34)
and
Croa,(Y)
2 o { = [ fieltox frp(0)a 1

—plog (Y +0%) — (1 —p)log (¢?) } 35)

with

l—-p _ & p
A
fR?(t): o2 © 62+T+02

_t+udi||2T 2Hd H\/
e T+? .
T+o2
(36)
Here Ij(-) denotes the modified Bessel function of order zero,
and Ei(+) is defined in (31).
Proof: See Appendix B. |

C. Discussion

Proposition 2 and 3 can be applied directly to Theorem 1
to get bounds on the sum-rate capacity. Figure 1 depicts an
example with two users m = 2, each of them having the
same power constraint, i.e., k1 = ke = k = 1. The LOS
components are assumed to be ||d;|| = 6 and ||dz| = 8, such
that ||d|| = 10. Note that the exact choice of the vectors d; and
d; including their dimensions n; and ns is irrelevant for the
given bounds. The LOS components influence the expressions
only via their magnitudes.

We clearly see that there exist two distinct regimes: for SNR
values below around 10 dB (or a rate of about Cyac =~ 5 nats)
the sum-rate capacity grows logarithmically in the SNR, while
above the threshold the growth changes dramatically and
becomes very slowly growing. We will show in the next
section that this high-SNR growth is double-logarithmic.

We conclude that one should not use this channel at high
SNR, and we ask for more insight about this threshold between
the efficient low-SNR regime and the highly inefficient high-
SNR regime. As described in [4, Sec. I.B] it turns out
that an asymptotic capacity analysis is the clue to such an
investigation. This might seem strange at first sight as we just
have concluded that we are not interested in this channel at
high SNR. However, it is important to realize that around the
threshold, the sum-rate capacity is dominated by the second
(constant) term of the asymptotic high-SNR expansion of the
sum-rate capacity (and not by the double-logarithmic term!).
Indeed, we note that

log(1 + log(1+ T)) ~ 2 nats 37

for T € [20 dB, 80 dB], and therefore conclude that as a rule
of thumb the threshold will be around Cyac =~ x + 2 nats.

Hence, in deriving the asymptotic expansion of capacity
one gains important understanding of the behavior of the
channel at a reasonable and finite SNR. In the remainder of this
paper we will investigate the asymptotic behavior of the sum-
rate capacity and in particular compute its exact asymptotic
expansion.

IV. THE ASYMPTOTIC SUM-RATE CAPACITY

We will now consider the asymptotic case, i.e., the situation
when the available power E tends to infinity. We know that
for the MISO Rician fading case® [1, Theorem 4.27]

Cmiso(E) = Cmiso,ava (E) =

E
= loglog ( > + xmiso,a +o(1)  (38)

Cwmiso,pp.d (E)

INote that asymptotically for E 1 oo, log (1 + log (1 + %)) =
loglog( ) + o(1).
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Cmac [nats per channel use]
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Fig. 1.

Nonasymptotic bounds (29) on the sum-rate of a two-user multiple-access Rician fading channel. The dotted line shows the capacity of an additive

Gaussian noise channel with equivalent received SNR. The red horizontal line corresponds to the fading number x as derived in Section V, and the dashed
red line is the approximate threshold x + 2 nats between the efficient low-SNR and the highly inefficient high-SNR behavior.

where o(1) denotes terms that tend to zero as E tends to infinity
and where xwmiso,d is a constant denoted MISO fading number.
Note that the value of xwmiso,q is independent of whether we
have assumed an average-power or a peak-power constraint
and is given by [1, Corollary 4.28]

xmiso.a = log ([|d||*) — Ei (—[|d[|*) — 1 (39)

where Ei(+) is defined in (31) and where d denotes the LOS
vector of the MISO Rician fading channel.
We further note that for any constant factor /3

élTrgo { loglog(BE) — loglog E} =0, >0 (40)

i.e., the double-logarithmic growth is not influenced by the
factors “m» or & in Theorem 1. Therefore, we directly get
from (29), (38), and (40) the following result.

Corollary 4: The sum-rate capacity (15) of the multiple-
access Rician fading channel (3) under any one of the three
power constraints (11), (12), or (13), and irrespective of the
values of kKi,...,HKy, grows double-logarithmically in the
power at high power:

_ E
EhTrglo {CMAC(E) — loglog ((72>} < 0.

We next step out to analyze the second term of the high-
SNR expansion of the sum-rate capacity: the MAC fading
number.

Definition 5: The MAC fading number is defined as

- E
XMac = EIITI(T)IQ {CMAC(E) — log (1 + log (1 + 02>> } .
(42)

A priori xmac depends on the type of power constraint (11),
(12), or (13) that is imposed on the input. However, it will

(41)

turn out that the value of the MAC fading number is identical
for all three cases. We therefore take the liberty to use a
slightly sloppy notation that does not specify the used power
constraint.

From (29), (38), and (40) we realize that

IMax Xmiso,d; < xmac < XMIso,d (43)
or explicitly (by (39))
max {log (||di[|*) — Ei (—[|dil|*) — 1}
< xmac < log ([|d[?) = Ei (—[ld[*) -1 (44)

where we remind the reader that d; is the LOS vector of user
iand d £ (d],...,d!,)" is the stacked LOS vector of all
users.

Using the monotonicity of £ +— log(§) — Ei (=€) — 1 we
now define dyac > 0 such that

xmac = log (dyac) — Ei (—dyac) — 1. (45)
From (44) we know that
max{||d1||2,...7|\dm||2}
<dyac < N1AI* = [[da|® + - + ([, (46)

In the remainder we will derive the exact value of dyac.

We would like to point out that in [5] it has been proven
that for the two-user case m = 2 with ny = ny = 1 (and with
K1 = Ko = 1) the upper bound in (46) cannot be achieved,
ie.,

dyac < 14 47)

with strict inequality.
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V. MAIN RESULT: THE MAC FADING NUMBER

Theorem 6: Consider a multiple-access Rician fading chan-
nel as defined in (3). Then, irrespective of which power
constraint (11), (12), or (13) is imposed on the input and
irrespective of the values of xi,...,K;,, the MAC fading
number xmac (42) is given by

xmac = log (djiac) — Ei (—dyac) — 1 (48)

with

dypac 2 max {||d11?, ..., [[dml*} . (49)

This shows that the lower bound in (46) is tight, which is a
rather pessimistic result. It means that if the magnitude of the
LOS vector of one user is strictly larger than the LOS vectors
of the other users, then the asymptotic sum-rate capacity can
only be achieved if all but this strongest user are switched off
at all times. If there are several users with LOS vectors of
identical largest magnitude, the sum-rate capacity can also be
achieved by time sharing among those best users.

Note that the result holds even if we allow for power sharing
among the users.

VI. PROOF OF MAIN RESULT

The proof of Theorem 6 consists of two parts. The first
part is given already in Section IV: it is shown in (46) that
max; ||d;||? is a lower bound to dij,c. Note that this lower
bound can be achieved using an input that satisfies the strictest
constraint, i.e., the peak-power constraint (11).

The second part will be to prove that max; ||d;||? also is an
upper bound to d3;,.. We will prove this under the assumption
of the slackest constraint, i.e., the power-sharing average-
power constraint (13). Since the peak-power constraint (11)
and the average-power constraint (12) are more stringent than
the power-sharing average-power constraint (13), the result
will follow.

Before we start with the actual derivation of this upper
bound, we need to generalize a concept that has been intro-
duced in [1] and [3].

Proposition 7 (Input Distributions that Escape to Infinity):
Let {Q}e>o be a family of joint input distributions of the
multiple-access Rician fading channel (3), parametrized by
the available power E > 0, satisfying the power-sharing
average-power constraint (13), and satisfying

I(Qe)

= 50
Etoo l0glog E (50)

where 1(Q) denotes the mutual information between input and
output of this channel induced by the input distribution Q).

Then at least one user’s input distribution must escape to
infinity, i.e., for any fixed Eg > 0,

E E
lim Qe ({IIX1|2 > O} U---u {||Xm||2 > 0}) =1
Etoo m m

(5D

Proof: See Appendix C. |

To put it in an engineering way, Proposition 7 says that in the
limit when the available power tends to infinity, at least one
user must use a coding scheme where every used symbol uses

infinite energy. Or in other words, if all users use one or more
symbols with finite energy, the asymptotic growth rate of the
sum-rate capacity cannot be achieved.

Definition 8: We define A to be the set of families of
joint input distributions of all users such that the users are
independent (7), such that the power-sharing average-power
constraint (13) is satisfied, and such that the input distribution
of at least one user escapes to infinity when the available power
E tends to infinity (51), i.e.,

A2 HQx}es0: (7, (13), and (51) are satisfied}.  (52)

We are now ready for the derivation of an upper bound on
the MAC fading number. The following bound is derived from
a duality-based bound on mutual information.

Lemma 9: The MAC fading number (42) is upper-bounded

as follows:
i )
< lim su log E| ——+
MAC = ETooQEé’A{ g < { X2
(-e[xr])
—Ei E[ —1,. (53)
( [1X[[2

Proof: See Appendix D. |

Noting that £ — log(§) — Ei (=€) — 1 is a monotonically

increasing function and using our definition of dyac in (45),
we hence conclude that

T 2
Pd X| } . 54)

d2ac < lim El—5
VA el grea | IXIP

TooQeeca
We would like to point out that without the constraint (51)
the right-hand side (RHS) of (54) actually equals to ||d||?, i.e.,
to the RHS of (46), from which we already know that it is (at
least in some cases) strictly loose. So we see that the presented
generalization of the concept of input distributions that escape
to infinity (Proposition 7) is crucial to this proof.
We now continue as follows:

d"X|?
sup EP | }

QecA ”)(”2
2
diX;+---+d X
= sup E | ! 12 ut m|2 (55)
QeeA HX1|| +"'+me||
< sup E|:|d{X12++dInXm|2:|
Toeea L IXlP A+ XKl
e |di X - [d;X]
+ sup E{ 1 (56)
;;QEEA ||}(1”2 +e 4+ H>(m||2
J#i
[P IXa[* + - -+ ([ dim|? X
< sup E
T Qeea X124 -+ [ X[
O [ 113 1] 1% }
+ sup E (57)
;;QEGA X1 ([? 4+ [ X2

J#i
where in (56) we split the supremum into many separate
suprema, and where (57) follows from the Cauchy-Schwarz
inequality

[dIX] < ld 21X (58)
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We next upper-bound the first term in (57) as follows:
E[|d1II2IIX1II2+ -+ |dm||2|Xm||2:|

sup
QecA ||X1H2+ s X2
Hle27‘2 P73
< su U 59
= ot { ek >
r'Dr

arE o

= Amax(D) (61)

=max {||d,|?, ..., |dwn|?} (62)

where we have defined the vector r 2 (r1,...,7,,)" and the

matrix

D £ diag (||d1]/%,. .., |dm]?) -

The equality (61) follows from the Rayleigh-Ritz Theorem [6,
Theorem 4.2.2].

To address the remaining terms in (57) we note that by
definition of A in (52) at least one user’s input must escape to
infinity. Without loss of generality assume that X; is among
them. Then we can separate the remaining terms in (57) into
two kinds:

(63)

||d1||||di||||X1||||Xi||:| :
sup E[ , 1€{2,...,m} (64)
Qeea  LIXalP 4+ X2
and
d; ||]1d 12X 11X
wp € [ LA
Qeed  LIXall?+ -+ 1 Xl
ijEf2.m) i #] (69
Our proof is concluded once we can show that
[ ks 1] X ||| }
lim sup E =0 (66)
£ greA [|X1||2+ X2
[ |1l 11K 1 }
lim sup E J J =0 67
g [ i Em ©7
fori,j €{2,...,m}, i #j.

We start with (66) and note that by dropping some terms in
the denominator we have

lim sup E{ Il (11 13X XK }
e qeea LXKl 4 4 X2
13K 1|
< ||d1||||d || hm sup E|: )
>qeea LIXal? + Xl
Next we define
B S ElIX ] (69)

and recall that if E 1 oo then E; 1 oo by our assumption that
user 1 escapes to infinity. Note further that
175 1

< - 70
e S 2 70

and that r; — Tgf;jz is monotonically decreasing if r1 > ;.
1 7

Therefore, for an arbitrary choice of a > 1, we define the
set D as

D2 {x1:0 < [Jx1] < allx]|} (1)

and bound
[ X 1% |
lim sup E{
Etoo geea  LIIXa|? + (1 X5][2
[ X 11X
<sup lim sup E { (72)
Qx, Eitoo u ear LIXal? + [1X4[2

=sup lim sup ll | I |

QX Eitoo Qxl cA, // ||)(1||2 =+ ||)(l||2
-dQx, (x1) dQx, (xi) (73)

< sup hm sup // ||X1||HX1||
Ox, E11% Qx, ey J Jxyep %112 + ]2
-dQx, (x1) dQx, (x;)
12 11 |

+sup lim  sup

Qx, F1T0 Qx, e //X1 €D

x|+ [l

. dQX1 (Xl) dQXi (Xz) (74)

Here in the first inequality (72) we define A; as the set of all
input distributions of the first user that escape to infinity, and
take the supremum over all ()x, without any constraint on the
average power and no dependence on Q)x, . The last inequality
(74) then follows from splitting the inner integration into two
parts and from the fact that the supremum of a sum is always
upper-bounded by the sum of the suprema.
Next, let’s look at the first term in (74) and use (70):

= s o

lim d dOx . (x;
e o 2P, //D ||xl||2+|| P 40 (x1) d@x, ()

< lim sup (75)

—d d i
E1100 Qx, €As //xle’D2 (1) 00, ()
_ 1
< [ swp 1t / dQx, (x1) | dQx,(x:) (76)
Ei1Too Qx1€A12 x1 €D
_ 1
:/ lim sup f/ dQx, (x1) | dQx,(x;) (77)
Eitoo \ Qx, €41 2 Jx,eD

/(hm sup fPr{HX1|| §a||xi||}> dQx, (x;) (78)
Eitoo Qx €A 2

= /Odei (x;) =0. (79)
Here, (75) follows from (70); the subsequent inequality (76)
follows by taking the supremum into the first integral which
can only enlarge the expression; in (77) we exchange limit
and integration which needs justification: define

1
ge, (%) = sup 5/ dQx, (x1) (80)
Qx, €A x1 €D
1
< sup i/del(Xl) (81)
Qx, €A1
1
= 5 £ gupper(xi) (82)

and then note that

/ Guper () dQx, (1) = / LAOx,(x) =5 8
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i.e., gupper(-) is independent of E; and integrable. Thus, by the
Dominated Convergence Theorem [7] we are allowed to swap
limit and integration.

Finally, (79) follows from Proposition 7 because Qx,
escapes to infinity.

Continuing with (74) we now have:

s E{ I 1) }
Btoogeea LXKl + (X2
[ [
<sup lim sup // —_——
Qx, B ox, e/ xiepe [Ixall? + |12

-d@x, (x1) dQx, (x;) (84)

a||X; X;
o TR su (allxil) x|

Qx, E11%0 Qx, €A //x1€DC (allxil[)* + [l
-dQx, (x1) dQx, (xi) (85)
=sup lim sup

a
Qx; E1foo Qx, €A1 //X16DC a? +1

-dQx, (x1) dQx, (x;) (86)

< ! d d (x5 87
lecpEll%OQj:lgAl//a“rl Q. (x1) dOx, (x:) (87)

— d :
Qllp / 77 d0x L (x3)
a
- 8
a1 (89)
for any € > 0 if we choose a large enough. Here (85) follows

because 71 TZ{:;Q is monotonically decreasing if r; > r;.
1 7

Since a > 1 is arbitrary, we obtain:

[ 1 131 ] .
X2 + XA P

(88)

lim sup E (90)

Etoo Qeea
This proves (66).
To prove (67), we again drop some terms in the denomina-
tor:

E[ ki 1 13 11X
|

X2+ -+ [ X[
11 (115
S o
LI X2+ 11X 12
We once more use definition (69) and note that
2
riT; T 1
< = 92
r%+r2+rjz_rf+2rf_2 ©2)

and that r; — e +2r2 is monotonically decreasing.

For an arbltrary choice of a > 1, we use the set D from
(71) to derive

B oo €[ KL ]
EfooQeea  LIIXal? + (1] + [1X5|?
— [ |11 1
< sup lim sup ///
Qx,Qx, E11%° Qx, €4, [l ([ 4 [[x:l[> + =12

-dQx, (x1) dQx, (x;) dQx, (x;) (93)
<sup lim sup

// I<ill®
o Bt gn e, /) Tl + 2P

< sup lim sup // HXZ”2
Ox, E11% Qx, e J Jxyep [l + 2[]i]2

-dQx, (xm) dQx, (i)
Qx; SRS Qx, €A1 //>c1 eDe

+sup lim  sup ”XZHQ
[Pea |2 + 2[J; 12

-dQx, (xm) dQx, (x;). (95)

Here in (93) we define 4; as the set of all input distribu-
tions such that the first user escapes to infinity, and take
the supremum over all joint distributions of @x, and Qx;
without any restriction on the average power. In the subsequent
inequality (94) we apply (92) to replace ||x;|| by ||x;||. In the
last inequality we split the inner integration into two parts

using (71).
For the first term in (95), we have
lim  sup // l|xz||2 5 dQx, (x1) dQx, (x;)
Eifeo Qx, ey J Jx, €D IIX1|| + 2[|x]|
l
2
< lim  sup // dQx, (x1)dQx, (x;) (96)
EiToo Qx, ey x1ED 2
=0 o7

where (97) follows from a derivation analogous to (75)—(79).
The second term in (95) can be bounded as follows:

// 12
Qx, E1T0 Qx, €A; J Jx,eDe

[|x;
x1][2 + 2[|x;|?

! dQXl (xl) dQX7 (XZ)

sup lim  sup

<sup lim sup // el 5
Qx, B110 Qx, s J Jx epe (allxil])? + 2|

-dQx, (x1) dQx, (xi) (98)

1
< d ; 99
_3;1?/ 5 49 (%) (99)
- . (100)
a2 +42 ¢

for any ¢ > 0 if we choose a large enough Here in the
first inequality we use that 71 — >t +2 : is monotonically
decreasing. Since a is arbitrary, this proves '(67) and concludes
the proof.

VII. CONCLUSIONS

In this paper we have derived a new upper and lower
bound on the sum-rate capacity of a noncoherent memoryless
multiple-access Rician fading channel with m transmitters
(with a different number of antennas each) and one receiver
(with only one antenna). We have shown that while the sum-
rate capacity at low SNR behaves normally with a logarithmic
growth in the available power, at high SNR it is highly
power-inefficient and only grows double-logarithmically. It is
therefore advisable not to operate such a channel at high SNR.
These bounds rely on novel bounds on the capacity of a single-
user MISO Rician fading channel that are valid for any SNR.

In a second step we then derived the exact asymptotic high-
SNR expansion of the sum-rate capacity, which has the form

E
Cwmac = loglog < ) + xmac + o(1). (101)
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We have shown that this asymptotic sum-rate capacity is
limited by the asymptotic capacity of the user seeing the best
channel and can only be achieved if all users with a channel
that is strictly worse than the best channel are always switched
off and cannot communicate. Note that this should not be
confused with the idea of time sharing where at any given
time only one user is allowed to communicate. In the presented
setup, as long as the channel model does not change, the best
user will remain the best user, i.e., all other users can never
communicate.> This very pessimistic result fits to the already
rather pessimistic double-logarithmic behavior and strengthen
the conviction that these channels should not be used at high
SNR, but only at low SNR where the channel will behave
normally like a coherent fading channel.

At first sight our results seems very similar to a result
by Knopp and Humblet [8], [9], [10], who showed that the
strategy of one user at a time also is optimal for the MAC
with full channel state information both at the transmitter and
receiver side. In [8] a continuous-time system is considered
and it is shown that if the transmitter and receiver have full
knowledge of the fading, then it is best if the users are assigned
separate frequency and time slots corresponding to best fading
realizations (orthogonal signaling). However, we would like to
point out that in this setup, each user can transmit regularly and
has a strictly nonzero average communication rate, while in
the channel model considered here, it turns out that optimally
most users have a zero transmission rate. So these two results
are not properly comparable.

We remark further that from the fact that the sum-rate
capacity is achieved in a corner where only one user has
positive rate, one can deduce that the asymptotic capacity
region has the shape of an m-dimensional simplex.

In the analysis of the channel we have allowed for many
different types of power constraints. We grouped them into
three categories: an individual peak-power constraint for each
user, an individual average-power constraint for each user, and
a combined power-sharing average-power constraint among all
users. The power-sharing constraint does not make sense in
a practical setup as it requires the users to share a common
battery, while their signals still are restricted to be independent.
However, the inclusion of this case helps with the analysis.
Moreover, it turns out that the pessimistic results described
above even hold if we allow for such power sharing.

Within a category of constraints, we do allow for different
power settings for different users as long as the constraints
scale linearly (see the constants x; and k in (11)—(13)). It
would be possible to extend the shown results to situations
where the power constraints among the different user differ
exponentially, i.e., if every user 7 is allowed to use a power

of at most oo
Y
m
for some «;,19; > 0. In this case, however, 1J; will influence

the MAC fading number* via an additive term log ;. This

3The only exception is if there are several users having the same best
channel. In this case these equivalent best users can use time sharing to
alternatively communicate.

4The double-logarithmic term in the asymptotic expansion will remain
unchanged.

then means that in the evaluation of the MAC fading number
(48) not only ||d;|| is important, but also this additive term
log ¥; has to be taken into account.

While in this paper we have restricted the channel model
to be memoryless, a generalization to a fading process with
memory is possible. Again, one has to be careful as the
memory will influence the MAC fading number and thereby
affect the search for the best channel.

As already discussed in Section III-C, we would like to
emphasize once more that the analysis of the asymptotic sum-
rate capacity of this channel is of practical interest in spite
of the fact that we will not use the channel at high SNR.
The reason is that the MAC fading number xmac is a good
indicator for the threshold between the efficient low-SNR and
the highly inefficient high-SNR regime. As a rule of thumb, the
MAC Rician fading channel can be used up to a sum-rate of
about y + 2 nats (see Figure 1 for an example). It is ominous
that the fading number—and ergo also the threshold—does
not vary with the type of the used power constraint. This
means that once a sum rate of around x + 2 nats is achieved,
the channel behavior will become very poor and cannot be
improved by any optimization of the power allocation. Instead
the system has to be changed in a more fundamental fashion
in order to achieve a change in the channel model.

An important clue to the derivations is a generalization of
the concept of input distributions that escape to infinity. To
put it in engineering words, the concept says that one cannot
achieve the sum-rate capacity asymptotically unless at least
one of the users always uses input symbols of infinite power.
Note that while we have stated this concept here specifically
for the multiple-access Rician fading channel at hand, it can
be further extended to more general multiple-user channels.

APPENDIX A
UPPER BOUND ON MISO RICIAN FADING CAPACITY

The upper bound (30) on the MISO Rician fading channel
(20) is a generalization of an upper bound on the SISO Rician
fading channel presented in [1, Eq. (166)]. It is based on a
duality-based upper bound on the mutual information taken
from [1, Eq. (25)]:

I(X;Y) < —h(Y|X) +logm + alog f + log’ (a, ;)
1 v
+(1-a)E [log (|Y|2 + 1/)] + BE [|Y|2} + 3
(102)
where o, 5 > 0 and v > 0 are free parameters.
We start with an upper bound on the fifth term on the RHS

of (102). To that goal we assume 0 < o < 1 such that 1 —a >
0 and define

€, = sup {E [log (|Y[*+v) | X =x]

—E[log|V]?| X:x]} (103)



10 EXTENDED VERSION of a Paper in IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

such that

(1-a)E [log (|Y|2 + V)]

=(1-a) [log|Y| ]
+(1—a)(Eflog ([Y]>+v)] —E[log|[Y[*]) (104)

< (1 - a)E[log[Y]?]

+(1-« sup{ [log (|[Y[*+v)| X =x]

—E[log|Y]?| X:x]} (105)
=(1-a)E[log|Y|’] + (1 — a)e,. (106)

Next we apply (102) to the MISO Rician fading channel
(20). We note that conditional on X = x

Y ~ Ne(d'x, [[x]|* + o) (107)
and compute
h(Y|X =x) =logm + 1 + log (||x||* + ?) (108)
E[IV]?] X =x] = |[dx|* + [|x]|> + ¢ (109)
and
E[10g|Y|2‘ X = x|
|dTX|2 ) |dTX|2
=1 N ool I IR -, IS sl A
°g(|x2+02 P o
+ log(|Ix||* + o2) (110)
12
L, =supE|log [1+ — ) | X = 111
s s (1 5 ) [ x=x]
14
=Ellog(1+— )| X= 112
[°g<+|Y|2>‘ 0} (a2
12
_ YN v’ v
log<a2> El( )+7 (113)

Here, in (110) we evaluate the expected logarithm of a
noncentral chi-square random variable as derived in [11], [1,
Lemma 10.1], [12, Lemma A.6]; and (112) follows from
a stochastic ordering argument by noting that the function
¢ + log (1 + ¢) is monotonically decreasing and that the
distribution of Y conditional on X = x is stochastically larger
than the distribution of Y conditional on X = 0 [1, Sec. IV.B].
The final step (113) follows by a direct calculation.
Plugging (106) and (108)—(113) into (102) then yields

I(X;Y)
< —1+alogB — aE[log (|X||* + ¢*)] +1logT (a, ;)
E[IX|*+0®+[d"X]?] v
B B

- e (0

d'x|?
— Ei (—)|(||2+|02>] +ey> (114)

_—1+alog<ﬂ>+logf( ;)

E[IX|] +0” ;IIdZE[IIX )

@R

Id]2E [IIX]1?]
+(1-a) (10% <E[||X||2]+g?>
— Ei (_W) + 61,> (115)

E[IXI2] +
where for the last step we have lower-bounded
E [log (|X|?+¢%)] > logo? used the monotonicity
of & — log(€) — Ei (—¢&) together with the Cauchy-Schwarz

inequality (58); and applied Jensen’s inequality to the concave

function
d]l*¢ [ lld]*€
¢ — log (§+02) —Ei <—€+02>.

The upper bound (30) now follows from the average-power
constraint (21).

(116)

APPENDIX B
LOWER BOUND ON MISO RICIAN FADING CAPACITY

The first lower bound (34) on the capacity of the MISO
Rician fading channel (26) with peak-power constraint (27)
is based on the following lemma that has been proven in [1,
Lemma 4.9].

Lemma 10 ([1]): Let the random vector X take value in
C"T and satisfy

Pr(|X[? > z2,] =1 (117)

mm]

for some z.;, > 0. Let H be a random ng X nr matrix
having finite entropy h(H) > —oco and finite expected squared
Frobenius norm E [||H||2] < oco. Let Z ~ N¢ (0,0?%l) and
assume that X, H, and Z are independent. Then

I(X; HX + Z)

> I(X;HX) — sup {h <H§<+ xZ ) - h(Hf()} (118)
[|%]|=1 min

We apply this lemma to the situation of the MISO Rician
fading channel (26) and choose the following distribution on

i

d, .
X, 2R- e®
I €

where ® and R are statistically independent, ® is uniform
between 0 and 27, ® ~ U([0,27)), and R is such that

log R* ~ U([log Yo, log Y])

(119)

(120)

for some fixed Y. This choice satisfies the peak-power
constraint (27) and also

Pr{[[X]|* > To] =1 (121)
Hence by Lemma 10, we get
CMISO,pp,di, (T)
> I(X;di X + HiX + 2) (122)
> I(X;diX; + HIX,)
Z
— sup < h (d{f{ +Hlx + ) — h(djx + HIX)}
Ix/|=1 { Vo
(123)
2
=I1(X;;d}X; + HIX;) — log (1 + ;) . (124)
0



LIN, MOSER: THE FADING NUMBER OF A MULTIPLE-ACCESS RICIAN FADING CHANNEL 11

We introduce a random variable

d;:
H2H].
flaill®

and rewrite the first term on the RHS of (124) as follows:

2~ Nz (0,1) (125)

= (dTX; + HIX;) — h(d'X; + H'X,|X,) (126)

= h(||d||¢® R + HR) — E[log (re| X:|?)] (127)

—h (y||d-||ei‘1>R n HR|2) —1—E[log R?] (128)
E

> h(R2 |l1dy e + A ‘(I) H) —1—E[log R?] (129)
— (R +E [1og [l + H| ] 1
— E[log R?]. (130)

Here, (128) follows from the fact that for a circularly sym-
metric random variable U we have [1, Lemma 6.16]

h(U) = h (|U)?) + log . (131)

In (129) we condition the differential entropy which cannot
increase its value; and (130) follows from the scaling property
of differential entropy [13, Th. 8.6.4].

Next, we again evaluate the expected logarithm of a non-
central chi-square random variable [11], [1, Lemma 10.1], [12,
Lemma A.6]:

€ log (|lae® + A[*)]
= € [tog (Jlldall + %)
= log (|di[|*) — Ei (~[|di[*)

(where the first equality follows because H is circularly
symmetric) and use the following identity [1, Lemma 6.15]:

h (log R?*) = h (R?) — E[log R*] .

(132)
(133)

(134)

The lower bound (34) now follows by plugging (130), (133),
and (134) into (124) and noting that because of (120)

h (log RQ) = loglog (TT) .
0

The second lower bound (35) follows from (122) with the
choice (32):
CMISO,pp,dqy (T)
= h(d]X; + H[X; + Z) — E[log (me(|X[|> + ¢?))] (137)
= h(R?) — 1 —plog(T + %) — (1 — p) log o*. (138)

(135)

Here in the last step we have used (131) together with the fact
that

dIX; + HX; + Z £ |d||[VY*E+VTHE+Z  (139)
(HdiH\/fE +VTHE + Z) ¢® (140)

‘HdiH\/TE +VTHE + Z’ e® (141)

[1e

II>

1>

R;

where “=” denotes “equal in probability law.” Hence, we
see that d]X; + HIX,; + Z is circularly symmetric with a
magnitude R; that, conditional on = = 0, is Rayleigh and,
conditional on = = 1, Rician distributed. The probability
density function of R? is given by (36).

APPENDIX C
PROOF OF PROPOSITION 7

Fix some Ey > 0 and let

fomppE o
i 2, Vi

Further we define

p=Pr[U =1]. (143)
To prove Proposition 7, we need to show that
lim p = 1. (144)
Etoo

To that goal, note the following:

I(Qe) =I(Xy,...,Xm;Y) (145)
=I(Xy,....,. X, U;Y) (146)
=IU;Y)+I(Xy,...,.X;Y|U) 147)
=IU;Y)+I(Xy,...,Xm; Y |U =0)Pr[U = 0]

+I(Xy,..., Xp; YU =1)Pr[U = 1] (148)
<log2+I(X1,...,X,;Y|U =0)
+pl(Xy,..., X Y|U=1) (149)

RE
<log2 + Cwmiso,av,d(Eo) + 1#Cmiso.avd <M> . (150)

Here (149) follows because U is a binary random variable and
because Pr[U = 0] < 1. To justify the subsequent inequality
(150), we note that because conditional on U =
% for all 7, i.e.,

E lz 112
=1

we can upper-bound the MAC situation by full-cooperation
MISO:

<Ep 51

IX4q,..., XY |U =0) < Cwmiso,av.d(Eo)- (152)
Moreover, by total expectation,
m m
E [Z ”Xiﬂ = ME[
i=1 i=1
E lZ IX:)*| U=0] (153)
i=1
>0
> puE [Z 12 (154)
i=1
from which follows that
i E nl Xz 2 RE
=1 H H
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and hence, again allowing full-cooperation,

RE
IX4,..., XY |U =1) < Cwmisoavd (,u) . (156)

Next, let E,, be a sequence with E,, 1 oo, let {Q, }, be
a family of joint input distributions for the multiple-access
Rician fading channel (3) such that

1(Qk,,)

_\%En/ 157
ntoo lOg 10g En ( )
and define
E E
MéQh(@mm%zO}u~u@MMon})
m m
(158)

By contradiction, assume p, — p* < 1. Then there must exist
some /49 < 1 such that

tn < po, n sufficiently large. (159)

From (150) we have

I(Qe,) < log 2 4+ Cwiso.avd (Eo)
loglogE,, — loglog E,,
———

—0

CMmiso,av.d (ﬁh) in log log (%EO
log log (H%En) loglog E,,

—1

Here the limiting behavior of the left-hand side (LHS) follows
from (157); the limiting behavior of the first term on the RHS
is because Camiso.av.d(Eo) < oo; the second term on the RHS
tends to one because E,, 1 oo implies KE,/u, 1 oo and
because of (38). Hence, when n 1 co we obtain

fin log log (ﬁEn)

—1

+ .(160)

1<1 161
- n%lo loglog E,, (161)
wloglog (%E)
< lim{ sup —0 7/ (162)
Etoo | n€(0,u0] IOg IOg E

where the first inequality follows from (160) and the second
inequality follows from (159). This, however, is a contradiction
to the fact that

wloglog (%E)
li A\
ro. loglogE

EfToo

sup
p€(0,po]

<1, VO<p<l.

(163)
Hence, we must have that p,, — 1, which proves the claim.

APPENDIX D
PROOF OF LEMMA 9

The derivation of this result is based on (114). We start by
bounding the following expressions:

E [log (| X[|* + 02)] > log o (164)

E[|IX[? + 02 + [d"X|?] < RE + o + ||d|*RE (165)

(I-a)e, <€ (166)

and
|de|2 ) ‘dTXP
E (1l — | - Ei| ———m—— > —~. (167
%g@xw+02 \TXEre )] T 1D

Here (165) follows from Cauchy-Schwarz (58) and the fact
that the input needs to satisfy the power-sharing average-power
constraint (13); and (167) follows because log & — Ei (=¢) >
—~ where v ~ 0.57 denotes Euler’s constant.

Plugging these bounds into (114) and applying once more
Jensen’s inequality to £ — log& — Ei (—¢) now yields

v $26]) - £[225]) -
)

(168)

4—o¢(1ogﬁ—1oga2—|—7)—i—logl“(a7
v 1

+ —+ = ((1 + ||d|[*)RE + 0?) .
3 5(( 4% )

We will now make the following choices of the free param-
eters « and [:

N v

log (1 + [[A[2)FE + 02) (169)

«

gE

for some constant v > 0. This leads to the following asymp-
totic behavior:

- 1
Im {logF <a, ;) —log <a>} =log (1 —¢™¥) (171)

e (170)

L~

Erane _ 2 _
grilooz(logﬁ logo? +7) =v (172)
_ 1 v
lim { —((1+ ||d||*)RE + 2+}:0 173
Elg};lo{ﬁ(( [dI*)RE + %) + 3 (173)
and
_ 1 E
li 1 ! 1+1 1+ —
i {os () —os (1010 (14.72) )
= —logv. (174)

(Compare with [1, Appendix VII], [12, Sec. B.5.9].)

Hence, using the definition of the MAC fading number
(42) and the definition of the sum-rate capacity (15), we
have derived the following upper bound on the MAC fading
number:

XMAC
— E
= i E)—log (1+1log 1+ — 1
ElTI&{CMAC( ) 0g< + og( + 02))} (175)
= lim su I(X;Y
Etoo Q}I: ( )
independent users
power constraint (13)
E
—log(l+log(1l+ — (176)
g

(1 + log <1 + E2>> } 177
o

lim { sup I(X;Y) — log
Etoo L QeeA
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;;l&{bg}(E [ ]) - (<]

< lim
Etoo

+ a(logﬁ —logo? +7) +logTl (a, ;) + e

+ % + % (1 + |]?)RE + 02)
E

— log (1 + log <1 + 2)) (178)
g

a g Lo (<)) - (< ]

= lim sup
1}

+ €, + v+ log (1 —e*”) — logv. (179)

Here, in (177) we make use of Proposition 7; (178) follows
from (168); and the last equality is due to (171)—(174).

By letting v tend to zero which makes sure that ¢, — 0 (as
can be seen from (103) and (113)) the claim follows.
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