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Abstract

The demand of new wireless communication systems with much higher data rates
that allow, e.g., mobile wireless broadband Internet connections inspires a quick
advance in wireless transmission technology. So far most systems rely on an approach
where the channel state is measured with the help of regularly transmitted training
sequences. The detection of the transmitted data is then done under the assumption
of perfect knowledge of the channel state. This approach will not be sufficient
anymore for very high data rate systems since the loss of bandwidth due to the
training sequences is too large. Therefore, the research interest on joint estimation
and detection schemes has been increased considerably.

Apart from potentially higher data rates a further advantage of such a system is
that it allows for a fair analysis of the theoretical upper limit, the so-called channel
capacity. “Fair” is used here in the sense that the capacity analysis does not ignore
the estimation part of the system, i.e., it takes into account the need of the receiver
to gain some knowledge about the channel state without restricting it to assume
some particular form (particularly, this approach does also include the approach
with training sequences!). The capacity of such a joint estimation and detection
scheme is often also known as non-coherent capacity.

Recent studies investigating the non-coherent capacity of fading channels have
shown very unexpected results. In stark contrast to the capacity with perfect channel
knowledge at the receiver, it has been shown that non-coherent fading channels
become very power-inefficient at high signal-to-noise ratios (SNR) in the sense that
increasing the transmission rate by an additional bit requires squaring the necessary
SNR. Since transmission in such a regime will be highly inefficient, it is crucial to
better understand this behavior and to be able to give an estimation as to where the
inefficient regime starts. One parameter that provides a good approximation to such
a border between the power-efficient low-SNR and the power-inefficient high-SNR
regime is the so-called fading number which is defined as the second term in the
high-SNR asymptotic expansion of channel capacity.

The results of this report concern this fading number. We restrict ourselves to
fading channels with multiple antennas at the transmitter, but only one antenna
at the receiver (a multiple-input single-output (MISO) situation), however, we do
allow memory. Furthermore, the fading laws are not restricted to be Gaussian, but
is assumed to be a general regular law with spatial and temporal memory. The
main result of this report are a new upper bound and a new lower bound on the
fading number of this MISO fading channel with memory. It can be seen as a
further step towards the final goal of the fading number of general multiple-inputs
multiple-outputs (MIMO) fading channels with memory.

In case of an isotropically distributed fading vector it is proven that the upper
and lower bound coincide, i.e., the general MISO fading number with memory is
known precisely.

The upper and lower bounds show that a type of beam-forming is asymptotically
optimal.

Keywords: Beam-forming, channel capacity, fading, fading number, flat fading
channel, high SNR, joint estimation and detection, memory, MISO, multiple-antenna,
non-coherent detection.
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Chapter 1

Introduction

1.1 General Background

The importance of mobile communication system nowadays needs not to be empha-
sized. Worldwide millions of people rely daily on their mobile phone. While for
the user a mobile phone looks very similar to a old-fashioned wired telephone, the
engineering technique behind it is very much different. The reason for this is that
in a wireless communication system several physical effects occur that change the
behavior of the channel completely compared with wired communication:

• The signal may find many different paths from the sender to the receiver via
various different reflections (buildings, trees, etc.). Therefore the receiver re-
ceives multiple copies of the same signal, however, since each path has different
length and different attenuation, the various copies of the signal will arrive at
different times and with different strength.

• Since the transmitter and/or the receiver might be in motion while transmit-
ting, a physical effect called Doppler effect occurs: the frequency of the trans-
mitted signal is shifted depending on the relative movement between receiver
and transmitter.

• Since receiver and transmitter are moving and because the environment is
permanently changing (e.g., movements by wind, passing cars, people, etc.),
the different signal paths are constantly changing.

The first two effects lead to a channel that not only adds noise to the transmitted
signal (as this is the case for the traditional wired communication channel), but also
changes the amplitude of the signal (so called fading) and in extreme cases intro-
duces inter-symbol interference. Both effects can be combatted using appropriate
transmissions schemes and coding.

The fact of the time variant nature of the channel is more difficult to deal with.
Nowadays, usually a wireless communication system uses training sequences that are
regularly transmitted between real data in order to measure the channel state, and
then this knowledge is used to detect the data. This approach has the advantage
that the system design can be split into two parts: one part dealing with estimating
the channel and one part doing the detection under the assumption that the channel
state is perfectly known.

The big disadvantage of the separate estimation and detection is that it is rather
inefficient because bandwidth is lost for the transmission of the training sequences.
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Particularly, if the channel is fast changing, the estimates will quickly become poor
and the amount of needed training data will be exuberantly large.

A more promising approach is to design a system that uses the received data
carrying the information at the same time for estimating the channel state. Such
a joint estimation and detection approach will be particularly important for future
systems where the required data rates are considerably larger than the rates provided
by present systems (like, e.g., GSM).

A further advantage of such joint estimation and detection systems is that they
allow fair and realistic approximations to the physically feasible data rates. To elab-
orate more on this point, we need to briefly review some basic facts from Information
Theory: in his famous landmark paper “A Mathematical Theory of Communication”
[1] Claude E. Shannon proved that for every communication channel there exists a
maximal rate—denoted capacity—above which one cannot transmit information re-
liably, i.e., the probability of making decoding errors tends to one. On the other
hand for every rate below the capacity it is theoretically possible to design a system
such that the error probability is as small as one wishes. Of course, depending on
the aimed probability of error, the system design will be rather complex and one
will encounter possibly very long delays between the start of the transmission until
the signal can be decoded. Particularly the latter is a large obstacle in real systems,
because most communication systems cannot afford large delays. Nevertheless, the
capacity shows the ultimate limit of communication rate of the available channel
and is therefore fundamental for the understanding of the channel and also for the
judgment of implemented systems regarding their efficiency.

So far the capacity analysis of above mentioned wireless communication channels
were based on the assumption that the receiver has perfect knowledge of the channel
state due to the training sequences. The capacity was then computed without taking
into account the estimation scheme. Such an approach will definitely lead to an
overly optimistic capacity, because

• even with large amount of training data, the channel knowledge will never be
perfect, but only an estimate; and because

• the data rate that is wasted for the training sequences is completely ignored.

The new approach of joint estimation and detection now allows to incorporate
the estimation into the capacity analysis. As a matter of fact, we don’t even need to
make some assumption about how a particular estimation scheme might work, but
can directly try to derive the ultimate data rate that the theoretically best system
could achieve. The capacity of such a system is also known as the non-coherent
capacity of fading channels.

Unfortunately, the evaluation of the non-coherent channel capacity involves an
optimization that is very difficult—if not infeasible—to evaluate analytically or nu-
merically.1 Therefore, the question arises how one could get knowledge about the
ultimate limit of reliable communication over fading channels without having to
solve this infeasible expression.

A promising and interesting approach to this goal is the study of good upper and
lower bounds to channel capacity. However, one needs to be aware that finding upper
bounds to an expression that itself is a maximization might be rather challenging,
too.

1As a matter of fact, this optimization is infeasible for most channels of interest.
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In [2] and extracts thereof published before [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], large progress has been made in tackling this problem: a technique has been
proposed for the derivation of upper bounds on channel capacity.2 It is based on a
dual expression for channel capacity where the maximization (of mutual information)
over distributions on the channel input alphabet is replaced with a minimization (of
average relative entropy) over distributions on the channel output alphabet. Every
choice of an output distribution leads to an upper bound on mutual information.
The chosen output distribution need not correspond to some distribution on the
channel input. With a judicious choice of output distributions one can often derive
tight upper bounds on channel capacity.

Furthermore, in [2] a technique has been proposed for the analysis of the asymp-
totic capacity of general cost-constrained channels. The technique is based on the
observation that—under fairly mild conditions on the channel—every input distri-
bution that achieves a mutual information with the same growth-rate in the cost
constraint as the channel capacity must escape to infinity ; i.e., under such a distri-
bution for some finite cost, the probability of the set of input symbols of lesser cost
tends to zero as the cost constraint tends to infinity. For more details about this
concept see Section 3.1.1.

Both techniques have been proven very successful: they have been successfully
applied to various channel models:

• the free-space optical intensity channel [2], [6], [8];

• an optical intensity channel with input-dependent noise [2];

• the Poisson channel [2], [6], [8];

• multiple-antenna flat fading channels with memory where the fading process is
assumed to be regular (i.e., of finite entropy rate3) and where the realization
of the fading process is unknown at the transmitter and unknown (or only
partially known) at the receiver [2], [4], [7];

• multiple-antenna flat fading channels with memory where the fading process
may be irregular (i.e., of possibly infinite entropy rate) and where the realiza-
tion of the fading process is unknown (or only partially known) at the receiver
[14], [15], [16], [17], [18];

• fading channels with feedback [19], [2], [5];

• non-coherent fading networks [20], [21];

• a phase noise channel [22], [23].

The bounds that have been derived in these contributions are often very tight. For
various cases the asymptotic capacity in the limit when the available power (signal-
to-noise ratio SNR) tends to infinity has been derived precisely. This is for example
the case for the regular single-input multiple-output (SIMO) fading channel with
memory and for the regular memoryless multiple-input single-output (MISO) fading
channel. In other cases the capacity pre-log (i.e., the ratio of channel capacity to
the logarithm of the SNR in the limit when the SNR tends to infinity) could be
quantified.

2The technique works for general channels, not fading channels only.
3I.e., a process is called regular when the actual fading realization cannot be predicted even if

the infinite past of the process is known.
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Some of these results have been very unexpected. E.g., it has been shown in [2]
that regular fading processes have a capacity that grows only double-logarithmically
in the SNR at high SNR. This means that at high power these channels become ex-
tremely power-inefficient in the sense that for every additional bit capacity the SNR
needs to be squared or, respectively, on a dB-scale the SNR needs to be doubled!
This behavior is independent of the particular law of the fading process, the law of
the noise process, or the number of antennas at the transmitter or receiver. More-
over, the capacity-growth at high SNR is double-logarithmic irrespective whether
there is memory in the fading process or not, and it even remains this slow when
introducing noiseless feedback [19]! This is in stark contrast to the situation of ad-
ditive noise channels and even to the so far known capacity results when assuming
prefect knowledge of the channel state at the receiver: there the capacity grows log-
arithmically in the power and the mentioned factors (like, e.g., number of antennas,
memory, or feedback) have a strong (positive) impact on the capacity. For addi-
tive white Gaussian noise (AWGN) channels, e.g., the number of receiver antennas
multiplies the capacity and is therefore very beneficial!
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Figure 1.1: An upper bound on the capacity of a Rician fading channel for different
values of the specular component d. The dotted line depicts the capacity of a
Gaussian channel of equal output-SNR, namely log(1 + ρ).

Therefore the question arises whether in the case of non-coherent fading channels
multiple antennas or feedback is useful at all. It turns out that although the asymp-
totic growth rate of capacity is unchanged by these parameters, they still do have
a large influence on the systems: the threshold above which the capacity growth
changes from logarithmic to double-logarithmic is highly dependent on them! As
an example Figure 1.1 shows the capacity of non-coherent Rayleigh fading channels
with various numbers of receive antennas.
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1.2 The Fading Number

In an attempt to quantify this threshold more precisely, the fading number has been
introduced [7], [2]. The fading number is defined as the second term in the high-SNR
capacity, i.e., at high SNR the channel capacity can be expressed as

C(snr) = log log snr + χ + o(1). (1.1)

Here, o(1) denotes a term that tends to zero as the SNR tends to infinity; and
χ is the fading number. For a mathematically more precise definition we refer to
Chapter 2.2.

We would like now to motivate our claim that the fading number is related to
the threshold between the efficient regime where capacity grows like log snr and the
inefficient regime where capacity only grows like log log snr. To that goal we need to
specify how to define this threshold. A very natural definition is as follows: we say
that wireless communication system operates in the inefficient high-SNR regime, if
its capacity can be well approximated by

C(snr) ≈ log log snr + χ, (1.2)

i.e., the o(1)-terms in (1.1) are small. Note that in the low- to medium-SNR regime
these terms are dominating over the log log snr-term.

Now consider the following situation: assume for the moment that the threshold
snr0 lies somewhere between 30 and 80 dB (it can be shown that this is a reasonable
assumption for many channels that are encountered in practice). In this case, the
threshold capacity C0 = C(snr0) must be somewhere in the following interval:

log log(30 dB) + χ ≤ C0 ≤ log log(80 dB) + χ, (1.3)

=⇒ χ + 2.1 nats ≤ C0 ≤ χ + 3 nats. (1.4)

From this immediately follows the following rule of thumb:

Conjecture 1. A system that operates at rates appreciably above χ + 2 nats is in
the high-SNR regime and therefore extremely power-inefficient.

Hence the fading number can be regarded as quality attribute of the channel:
the larger the fading number is the higher is the maximum rate at which the channel
can be used without being extremely power-inefficient.

Moreover, it follows from this observation that a system needs to be designed
such as to have a large fading number. However, in order to understand how the
fading number is influenced by the various design parameters like the number of
antennas, feedback, etc., we need to know more about the exact value of χ. So far
explicit expressions for the fading number were given for a number of fading models,
e.g., the fading number of single-input single-output (SISO) fading channels with
memory was derived in [7], [2] and the single-input multiple-output (SIMO) case
with memory was derived in [4], [3], [2].

However, there are still many interesting cases open and unsolved. For example,
it is interesting to study the influence of multiple transmitter antennas on the fading
number. The fading number of the multiple-input single-output (MISO) fading
channel, for example, has only been derived in general for the memoryless case [7],
[2]:

χ(HT) = sup
‖x̂‖=1

{
log π + E

[
log |HTx̂|2

]
− h(HTx̂)

}
. (1.5)
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This fading number is achievable by inputs that can be expressed as the product of
a constant unit vector in C

nT and a circularly symmetric, scalar, complex random
variable of the same law that achieves the memoryless SISO fading number [7].
Hence, the asymptotic capacity of a MISO fading channel is achieved by beam-
forming where the beam-direction is chosen not to maximize the SNR, but the
fading number.

In [15] and [16] Koch & Lapidoth investigate the fading number of MISO fading
channels with memory where the fading is Gaussian. For the case of a mean-d
Gaussian vector process with memory where {Hk −d} is spatially independent and
identically distributed (IID) and where each component is a zero-mean unit-variance
circularly symmetric complex Gaussian process, the fading number is shown to be4

χGauss, spat. IID({HT

k}) = −1 + log ‖d‖2 − Ei
(
−‖d‖2

)
+ log

1

ǫ2
, (1.6)

where ǫ2 denotes the prediction error when predicting one of the components of the
fading vector based on the observation of its past.

Furthermore, Koch & Lapidoth derive an upper bound to the fading number for
the general Gaussian case, i.e., {Hk − d} is a zero-mean circularly symmetric sta-
tionary ergodic complex Gaussian process with matrix-valued spectral distribution
function F(·) and with covariance matrix K. Assuming that the prediction error
covariance matrix Σ is non-singular (regularity assumption) they show that

χGauss({H
T

k}) ≤ −1 + log d2
∗ − Ei

(
−d2

∗

)
+ log

‖K‖

λmin
, (1.7)

where

d∗ = max
‖x̂‖=1

|E[HT

k] x̂|
√

Var
(
HT

kx̂
) ; (1.8)

λmin denotes the smallest eigenvalue of Σ; and where ‖ · ‖ denotes the Euclidean
operator norm of matrices, i.e., the largest singular value.

In this report we extend these results to general (not necessarily Gaussian) fading
channels.

The remaining of this report is structured as follows: after some remarks about
notation and a detailed mathematical definition of the channel model in the following
chapter, we will present the main results, i.e., a new upper and lower bound on the
MISO fading number, in Chapter 3. There also some concepts are introduced that
are important in the analysis of channel capacity, e.g., the concept of distributions
that escape to infinity, and relation between stationarity and capacity achieving
input distributions.

We then specialize these results to the case of isotropically distributed fading
processes in Chapter 4.1 and to Gaussian fading in Chapter 4.2. For isotropically
distributed fading we will show that the upper and lower bound coincide. In the
Gaussian case we shall derive the above mentioned results of Koch & Lapidoth as
special cases of our bounds.

The proof of the main result is found in Chapter 5; and we conclude in Chapter 6.

4Note that all results in this paper are in nats.
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Chapter 2

Definitions and Notation

2.1 Notation

We try to use upper-case letters for random quantities and lower-case letters for
their realizations. This rule, however, is broken when dealing with matrices and
some constants. To better differentiate between scalars, vectors, and matrices we
have resorted to using different fonts for the different quantities. Upper-case letters
such as X are used to denote scalar random variables taking value in the reals R or
in the complex plane C. Their realizations are typically written in lower-case, e.g.,
x. For random vectors we use bold face capitals, e.g., X and bold lower-case for
their realizations, e.g., x. Deterministic matrices are denoted by upper-case letters
but of a special font, e.g., H; and random matrices are denoted using another special
upper-case font, e.g., H. If scalars or deterministic scalar functions are not denoted
using Greek or lower-case letters, we use yet another font, e.g., C for capacity (in
contrast to C) or F(·) for the spectral density function (in contrast to F (·)). The
energy per symbol is denoted by E and the signal-to-noise ratio SNR is denoted by
snr.

We use the shorthand Hb
a for (Ha, Ha+1, . . . , Hb). For more complicated expres-

sions, such as (HT

ax̂a,H
T

a+1x̂a+1, . . . ,H
T

b x̂b), we use the dummy variable ℓ to clarify
notation: {HT

ℓ x̂ℓ}
b
ℓ=a.

The subscript k is reserved to denote discrete time. Curly brackets are used to
distinguish between a random process and its manifestation at time k: {Xk} is a
discrete random process over time, while Xk is the random variable of this process
at time k.

Hermitian conjugation is denoted by (·)†, and (·)T stands for the transpose (with-
out conjugation) of a matrix or vector. The trace of a matrix is denoted by tr (·).

We use ‖ · ‖ to denote the Euclidean norm of vectors or the Euclidean operator
norm of matrices. That is,

‖x‖ ,

√
√
√
√

m∑

t=1

|x(t)|2, x ∈ C
m (2.1)

‖A‖ , max
‖ŵ‖=1

‖Aŵ‖. (2.2)

Thus, ‖A‖ is the maximal singular value of the matrix A.
We will often split a complex vector v ∈ C

m up into its magnitude ‖v‖ and its
direction

v̂ ,
v

‖v‖
(2.3)
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where we reserve this notation exclusively for unit vectors, i.e., throughout the
paper every vector carrying a hat, v̂ or V̂, denotes a (deterministic or random,
respectively) vector of unit length

‖v̂‖ = ‖V̂‖ = 1. (2.4)

To be able to work with such direction vectors we shall need a differential entropy-
like quantity for random vectors that take value on the unit sphere in C

m: let λ
denote the area measure on the unit sphere in C

m. If a random vector V̂ takes value
in the unit sphere and has the density pλ

V̂
(v̂) with respect to λ, then we shall let

hλ(V̂) , −E

[

log pλ
V̂

(V̂)
]

(2.5)

if the expectation is defined.
We note that just as ordinary differential entropy is invariant under translation,

so is hλ(V̂) invariant under rotation. That is, if U is a deterministic unitary matrix,
then

hλ(UV̂) = hλ(V̂). (2.6)

Also note that if V̂ is uniformly distributed on the unit sphere, then hλ(V̂) = log cm,
where cm denotes the surface area of the unit sphere in C

m

cm =
2πm

Γ(m)
. (2.7)

The definition (2.5) can be easily extended to conditional entropies: if W is
some random vector, and if conditional on W = w the random vector V̂ has density
pλ
V̂|W

(v̂|w) then we can define

hλ

(
V̂

∣
∣W = w

)
, −E

[

log pλ
V̂|W

(V̂|W)
∣
∣
∣ W = w

]

(2.8)

and we can define hλ

(
V̂

∣
∣W) as the expectation (with respect to W) of hλ

(
V̂

∣
∣W =

w
)
.
Based on these definitions we have the following lemma:

Lemma 2. Let V be a complex random vector taking value in C
m and having dif-

ferential entropy h(V). Let ‖V‖ denote its norm and V̂ denotes its direction as
defined in (2.3). Then

h(V) = h(‖V‖) + hλ

(
V̂

∣
∣ ‖V‖

)
+ (2m − 1)E[log ‖V‖] (2.9)

= hλ

(
V̂

)
+ h

(
‖V‖

∣
∣ V̂

)
+ (2m − 1)E[log ‖V‖] (2.10)

whenever all the quantities in (2.9) and (2.10), respectively, are defined. Here
h(‖V‖) is the differential entropy of ‖V‖ when viewed as a real (scalar) random
variable.

Proof. Omitted.

We shall write X ∼ NC(µ, K) if X − µ is a circularly symmetric zero-mean
Gaussian random vector of covariance matrix E

[
(X − µ)(X − µ)†

]
= K. By X ∼

U ([a, b]) we denote a random variable that is uniformly distributed on the interval
[a, b].

All rates specified in this paper are in nats per channel use, i.e., log(·) denotes
the natural logarithmic function.
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2.2 The Channel Model

We consider a MISO fading channel whose time-k output Yk ∈ C is given by

Yk = HT

kxk + Zk (2.11)

where xk ∈ C
nT denotes the time-k channel input vector; where the random vector

Hk denotes the time-k fading vector; where HT

k denotes the transpose of the vector
Hk; and where Zk denotes additive noise. Here C denotes the complex field, C

nT

denotes the nT-dimensional complex Euclidean space, and nT is the number of
transmit antennas. We assume that the additive noise is an IID zero-mean white
Gaussian process of variance σ2 > 0.

As for the multi-variate fading process {Hk}, we shall only assume that it is
stationary, ergodic, of finite second moment

E
[
‖Hk‖

2
]

< ∞, (2.12)

and of finite differential entropy rate

h({Hk}) > −∞ (2.13)

(the regularity assumption).
Finally, we assume that the fading process {Hk} and the additive noise process

{Zk} are independent and of a joint law that does not depend on the channel input
{xk}.

As for the input, we consider two different constraints: a peak-power constraint
and an average-power constraint. We use E to denote the maximal allowed instan-
taneous power in the former case, and to denote the allowed average power in the
latter case. For both cases we set

snr ,
E

σ2
. (2.14)

The capacity C(snr) of the channel (2.11) is given by

C(snr) = lim
n→∞

1

n
sup I (Xn

1 ; Y n
1 ) (2.15)

where we use Xk
j to denote Xj , . . . ,Xk and where the supremum is over the set of

all probability distributions on Xn
1 satisfying the constraints, i.e.,

‖Xk‖
2 ≤ E , almost surely, k = 1, 2, . . . , n (2.16)

for a peak constraint, or

1

n

n∑

k=1

E
[
‖Xk‖

2
]
≤ E (2.17)

for an average constraint.
Specializing [7, Theorem 4.2] or [2, Theorem 6.10], respectively, to MISO fading,

we have
lim

snr↑∞

{

C(snr) − log log snr

}

< ∞. (2.18)

The fading number χ is now defined as in [7, Definition 4.6] and in [2, Definition 6.13]
by

χ({HT

k}) , lim
snr↑∞

{

C(snr) − log log snr

}

. (2.19)
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Prima facie the fading number depends on whether a peak-power constraint (2.16)
or an average-power constraint (2.17) is imposed on the input. Since a peak-power
constraint is more stringent than an average-power constraint, we will derive the
upper bound using the average-power constraint and the lower bound using the
peak-power constraint. In case of an isotropically distributed fading process we
shall see that both constraints lead to identical fading numbers.
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Chapter 3

Main Results

3.1 Preliminaries

Before we can state our new results, we need to give some preliminary results.

3.1.1 Escaping to Infinity

We start with a discussion about the concept of capacity achieving input distribu-
tions that escape to infinity.

A sequence of input distributions parameterized by the allowed cost (in our case
of fading channels the cost is the available power or the SNR, respectively) is said
to escape to infinity if it assigns to every fixed compact set a probability that tends
to zero as the allowed cost tends to infinity. Loosely speaking, this means that in
the limit—when the allowed cost tends to infinity—such a distribution does not use
finite-cost symbols.

This notion is of importance since the asymptotic capacity of many channels
of interest can only be achieved by input distributions that escape to infinity. As
a matter of fact one can show that every input distribution that only achieves a
mutual information of identical asymptotic growth-rate as the capacity must escape
to infinity. Loosely speaking, for many channels it is not favorable to use finite-cost
input symbols whenever the cost constraint is loosened completely.

In the following we will only state this result specialized to the situation at hand.
For a more general description and for all proofs we refer to [7], [2].

Definition 3. Let {QE}E≥0 be a family of input distributions for the memoryless
version of the fading channel (2.11), i.e., input distributions of the channel

Y = HTx + Z (3.1)

where x ∈ C
nT. This family is parameterized by the available average power E such

that
EQE

[
‖X‖2

]
≤ E , E ≥ 0. (3.2)

We say that the input distributions {QE}E≥0 escape to infinity if for every E0 > 0

lim
E↑∞

QE

(
‖X‖2 ≤ E0

)
= 0. (3.3)

We now have the following:

12



Lemma 4. Let the memoryless MISO fading channel be given as in (3.1) and let
W (·|·) denote the corresponding conditional channel law. Let {QE}E≥0 be a family
of input distributions satisfying the power constraint (3.2) and the condition

lim
E↑∞

I(QE , W )

log log E
= 1. (3.4)

Then {QE}E≥0 escapes to infinity.

Proof. A proof can be found in [7], [2].

Hence, when computing bounds on the fading number (which is part of the
capacity in the limit when E tends to infinity, see (2.19)) we may assume that

Pr
[
‖X‖2 ≤ E0

]
= 0. (3.5)

3.1.2 An Upper Bound on Channel Capacity

In [7], [2] a new approach of finding upper bounds to channel capacity has been
introduced. Since capacity is by definition a maximization of mutual information, it
is implicitly difficult to find upper bounds on it. The new proposed technique bases
on a dual expression of mutual information that leads to an expression of capacity
as a minimization instead of a maximization. This way it becomes much easier to
find upper bounds.

Again, here we only state the upper bound in a form needed in the derivation
of Theorem 7, for a more general form, for more mathematical details, and for all
proofs we refer to [7], [2].

Lemma 5. Consider a memoryless channel1 with input alphabet C
nR and output

alphabet C as given in (3.1). Then the mutual information between input and output
of the channel is upper-bounded as follows:

I(X; Y ) = −h(Y |X) + log π + α log β + log Γ

(

α,
ν

β

)

+ (1 − α)E
[
log

(
|Y |2 + ν

)]
+

1

β
E
[
|Y |2

]
+

ν

β
(3.6)

where α, β > 0 and ν ≥ 0 are parameters that can be chosen freely.

Proof. A proof can be found in [7], [2].

3.1.3 Capacity Achieving Input Distributions and Stationarity

One of the main assumption about our channel model is that the fading process and
the additive noise are stationary. This assumption is crucial both for the results
as well as the derivation, i.e., we don’t believe the results to still be valid in a
non-stationary setting.

From an intuitive point of view a stationary channel model should have a capacity
achieving input distribution that is stationary. Unfortunately, we are not aware of a
rigorous proof of this claim. However, we are able to prove a less strong statement
which is basically saying that for our channel model we may limit ourselves to joint
input distributions under which the input vectors have the same law for (almost) all
time k:

1Actually, the lemma requires some mathematical conditions on the alphabets and the channel
law to be satisfied. However, all these conditions are satisfied in our context. For more detail see
[7], [2].
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Lemma 6. Fix some power E with corresponding snr , E/σ2. Let C(E) denote the
corresponding channel capacity. Then for every fixed ǫ > 0 there corresponds some
positive integer η = η(E , ǫ) and some distribution QE,ǫ = Q(E , ǫ) on C

nT such that
for every blocklength n sufficiently large there exists some input Xn

1 satisfying the
following:

1. The input Xn
1 nearly achieves capacity in the sense that

1

n
I
(
Xn

1 ; Y n
1

)
≥ C(E) − ǫ. (3.7)

2. Except for the first η−1 vectors X
η−1
1 and for at most the last 2(η−1) vectors

Xn
n−2η+3 the vectors

Xη,Xη+1, . . . ,Xn−2η+2 (3.8)

all have the same distribution QE,ǫ.

3. This marginal distribution QE,ǫ gives rise to a second moment E:

E
[
‖Xℓ‖

2
]

= E , ℓ = η, . . . , n − 2η + 2. (3.9)

4. The first η−1 symbols and the last 2(η−1) vectors satisfy the power constraint
possibly strictly

E
[
‖Xℓ‖

2
]
≤ E , ℓ ∈ {1, . . . , η − 1} ∪ {n − 2η + 3, . . . , n}. (3.10)

Proof. See Appendix A.

Note that this lemma and its proof are analogous to a very similar lemma needed
in the derivation of the fading number of SIMO fading channels with memory [7],
[2].

3.2 Main Results

We are now ready to state the new bounds on the fading number of a MISO fading
channel with memory. We start with an upper bound:

Theorem 7. Consider a MISO fading channel with memory (2.11) where the sta-
tionary and ergodic fading process {Hk} takes value in C

nT and satisfies h({Hk}) >
−∞ and E

[
‖Hk‖

2
]

< ∞. Then, irrespective of whether a peak-power constraint
(2.16) or an average-power constraint (2.17) is imposed on the input, the fading
number χ

(
{HT

k}
)

is upper-bounded by

χ
(
{HT

k}
)
≤ sup

x̂0
−∞

{

log π + E
[
log |HT

0x̂0|
2
]
− h

(
HT

0x̂0

∣
∣ {HT

ℓ x̂ℓ}
−1
ℓ=−∞

)}

(3.11)

where x̂ℓ ,
xℓ

‖xℓ‖
denotes a vector of unit length.

Proof. We give here only an outline of the proof. The details can be found in
Chapter 5.1.

The basic idea of the proof is to split the mutual information into a term that
does not take into account the memory of the fading process and a term that takes
care of the memory:

1

n
I
(
Xn

1 ; Y n
1

)
≈ I(X0; Y0) +

1

n

n∑

k=1

I
(
HT

kX̂k; {H
T

ℓX̂ℓ}
k−1
ℓ=1

∣
∣ X̂n

1

)
. (3.12)
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The derivation of this expression is complicated by the fact that Lemma 6 only
guarantees equal marginals away from the edges, i.e., we need to take care of the
edge effects.

In a next step we now upper-bound the first term on the RHS using Lemma 5.
This leads to a rather complicated looking expression with various terms that depend
on the blocklength n, the power E , the free parameters α, β, and ν, and, of course,
on the input distribution. However, interestingly, there are no terms that depend
on the input direction X̂k and the input amplitude ‖Xk‖ at the same time. We can
therefore separate the expression in a group of terms that depend on E and another
group of terms that do not depend on E .

By an appropriate choice of the free parameters, and by letting n and E (in this
order) go to infinity, we end up with the following bound:

χ({HT

k}) ≤ sup
Q

X̂
0
−∞

{

log π + E

[

log |HT

0X̂0|
2
]

− h
(
HT

0X̂0

∣
∣ {HT

ℓX̂ℓ}
−1
ℓ=−∞, X̂0

−κ

)
}

(3.13)

≤ sup
x̂0
−∞

{

log π + E
[
log |HT

0x̂0|
2
]
− h

(
HT

0x̂0

∣
∣ {HT

ℓ x̂ℓ}
−1
ℓ=−κ

)}

. (3.14)

Next we state a lower bound to the fading number of a MISO fading channel:

Theorem 8. Consider a MISO fading channel with memory (2.11) where the sta-
tionary and ergodic fading process {Hk} takes value in C

nT and satisfies h({Hk}) >
−∞ and E

[
‖Hk‖

2
]

< ∞. Then the fading number χ
(
{HT

k}
)

is lower-bounded by

χ
(
{HT

k}
)
≥ sup

x̂

{

log π + E
[
log |HT

0x̂|
2
]
− h

(
HT

0x̂
∣
∣ {HT

ℓ x̂}
−1
ℓ=−∞

)}

(3.15)

where x̂ , x

‖x‖ denotes a vector of unit length.
Moreover, this lower bound is achievable by IID inputs that can be expressed as

the product of a constant unit vector x̂ ∈ C
nT and a circularly symmetric, scalar,

complex IID random process {Xk} such that

log |Xk|
2 ∼ U ([log log E , log E ]) . (3.16)

Note that this input satisfies the peak-power constraint (2.16) (and therefore also the
average-power constraint (2.17)).

Proof. We give here only an outline of the proof. The details can be found in
Chapter 5.2.

The lower bound is based on the assumption of a specific input distribution
which is chosen to be of the form

Xk = Xk · x̂ (3.17)

where x̂ is a deterministic unit vector (the beam-direction) and where {Xk} is IID
circularly symmetric with

log |Xk|
2 ∼ U ([log log E , log E ]) . (3.18)

Note that this choice for {Xk} achieves the fading number for the SISO fading
channel

Yk = (HT

kx̂) · Xk + Zk (3.19)
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with fading process {Hk} = {HT

kx̂}. The lower bound is then derived by proving

1

n
I(Xn

1 ; Y n
1 ) ≈

1

n

n∑

k=1

I
(
Xk; Yk

∣
∣{HT

ℓ x̂}
k−1
ℓ=1

)
(3.20)

and using the results of memoryless SISO fading channels with side-information [7],
[2].

16



Chapter 4

Special Cases

Before we discuss the proofs more in detail, we would like to add some insight by
considering some special cases and specializing Theorem 7 and Theorem 8 to these
situations. Firstly, we will analyze a fading process that is isotropically distributed,
and secondly we investigate the in practice very important special case of Gaussian
fading.

4.1 Isotropically Distributed Fading

Let’s consider the special case of isotropically distributed fading processes, i.e., for
every deterministic unitary nT × nT matrix U

Hk
L

= UHk, (4.1)

where we use “
L

=” to denote equal in law.
In this case we have the following corollary:

Corollary 9. Consider a MISO fading channel with memory (2.11) where the sta-
tionary and ergodic fading process {Hk} takes value in C

nT, satisfies h({Hk}) > −∞
and E

[
‖Hk‖

2
]

< ∞, and is isotropically distributed. Then the upper bound (3.11)
and the lower bound (3.15) coincide and the fading number χiso

(
{HT

k}
)

is given by

χiso

(
{HT

k}
)

= log π + E
[
log |HT

0ê|
2
]
− h

(
HT

0ê
∣
∣ {HT

ℓ ê}
−1
ℓ=−∞

)
(4.2)

where ê is some deterministic unit vector.

Proof. This corollary follows immediately from Theorem 7 and 8 by noting that for
every ê

HT

kê
L

= HT

kU
Tê = HT

kê
′ (4.3)

where the first equality in law follows from (4.1) and the second equality by defining
a new unit vector ê′ , UTê. Note that for the MISO case isotropically distributed is
equivalent to rotation commutative in the generalized sense as defined in [7, Defini-
tion 4.37] or [2, Definition 6.37].

4.2 Gaussian Fading

In this section we assume that the fading process {Hk} is a mean-d Gaussian process
such that {H̃k} = {Hk−d} is a zero-mean, circularly symmetric, stationary, ergodic,
complex Gaussian process with matrix-valued spectral distribution function F(·),
and with covariance matrix K. Furthermore, we assume that the prediction error
covariance matrix Σ is non-singular (regularity assumption).

17



4.2.1 Upper Bound for Gaussian Fading

We start with a new derivation of the upper bound (1.7) based on Theorem 7. We
will see that (1.7) is in general less tight than (3.11).

We start by loosening the upper bound (3.11) as follows:

χ
(
{HT

k}
)
≤ sup

x̂0
−∞

{

log π + E
[
log |HT

0x̂0|
2
]
− h

(
HT

0x̂0

∣
∣ {HT

ℓ x̂ℓ}
−1
ℓ=−∞

)}

(4.4)

= sup
x̂0
−∞

{

log π + E
[
log |HT

0x̂0|
2
]
− h

(
HT

0x̂0

)

+ h
(
HT

0x̂0

)
− h

(
HT

0x̂0

∣
∣ {HT

ℓ x̂ℓ}
−1
ℓ=−∞

)}

(4.5)

≤ sup
x̂0

{

log π + E
[
log |HT

0x̂0|
2
]
− h

(
HT

0x̂0

)}

+ sup
x̂0
−∞

{

h
(
HT

0x̂0

)
− h

(
HT

0x̂0

∣
∣ {HT

ℓ x̂ℓ}
−1
ℓ=−∞

)}

(4.6)

= sup
x̂0

{

log π + E
[
log |HT

0x̂0|
2
]
− h

(
HT

0x̂0

)}

+ sup
x̂0
−∞

I
(
HT

0x̂0; {H
T

ℓ x̂ℓ}
−1
ℓ=−∞

)
, (4.7)

where (4.6) follows from

sup
x
{f(x) + g(x)} ≤ sup

x
f(x) + sup

x
g(x). (4.8)

In [7, Corollary 4.28], [2, Corollary 6.28] it has been shown that the IID MISO
fading number (1.5) for Gaussian fading is given by

χ(HT) = sup
‖x̂‖=1

{
log π + E

[
log |HTx̂|2

]
− h

(
HTx̂

)}
(4.9)

= −1 + log d2
∗ − Ei

(
−d2

∗

)
(4.10)

where d∗ is given in (1.8). This proves the equivalence of the first supremum in (4.7)
with the first three terms of (1.7). It therefore only remains to prove that

sup
x̂0
−∞

I
(
HT

0x̂0; {H
T

ℓ x̂ℓ}
−1
ℓ=−∞

)
≤ log

‖K‖

λmin
. (4.11)

To this goal note that

sup
x̂0
−∞

I
(
HT

0x̂0; {H
T

ℓ x̂ℓ}
−1
ℓ=−∞

)
≤ sup

x̂0
−∞

I
(
HT

0x̂0; {H
T

ℓ x̂ℓ}
−1
ℓ=−∞,H−1

−∞

)
(4.12)

= sup
x̂0

I
(
HT

0x̂0;H
−1
−∞

)
(4.13)

= sup
x̂0

{

h
(
HT

0x̂0

)
− h

(
HT

0x̂0

∣
∣H−1

−∞

)}

(4.14)

= sup
x̂0

{

log
(

πex̂†
0Kx̂0

)

− h
(
HT

0x̂0

∣
∣H−1

−∞

)}

. (4.15)

Here, the first inequality follows from the inclusion of additional random variables
in the mutual information; the subsequent equality from the fact that given the
past realization of the fading, HT

0x̂0 is independent of {HT

ℓ x̂ℓ}
−1
ℓ=−∞; and in the

last equality we have used the expression for the differential entropy of a Gaussian
random variable with K denoting the covariance matrix of {Hk}.
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Note that the first inequality in general is not tight, i.e., (1.7) is in general looser
than (4.7) which in turn is in general looser than (3.11).

To compute the second term on the RHS of (4.15), we express the fading H0 as

H0 = H̄0 + H̃0 (4.16)

with H̄0 being the best estimate of H0 based on the past realizations. We note that
H̃0 ∼ NC(0, Σ) where Σ denotes the prediction error covariance matrix. Hence

h
(
HT

0x̂0

∣
∣H−1

−∞

)
= log

(

πex̂†
0Σx̂0

)

. (4.17)

The bound (4.11) now follows by the Rayleigh-Ritz Theorem [24, Theorem 4.2.2],
[2, Theorem A.9]

λmin = min
x̂

x̂†
Σx̂, (4.18)

the definition of the Euclidean norm of matrices, and the properties of positive
semi-definite matrices:

max
x̂

x̂†
Kx̂ = max

x̂

x̂†
S

T
Sx̂ = max

x̂

‖Sx̂‖2 = ‖S‖2 = ‖K‖. (4.19)

4.2.2 Spatially IID Gaussian Fading

We next specialize the assumptions to the case where {H̃k} = {Hk−d} is a spatially
IID process where each component is a zero-mean unit-variance circularly symmetric
complex Gaussian process of spectral distribution function F(·). For this case we
will now present a new derivation of the result (1.6) based on our new bounds.

Note that we cannot apply Corollary 9 here: even though {H̃k} is isotropically
distributed, {Hk} is not due to its mean vector d.

However, the term I
(
HT

0x̂0; {H
T

ℓ x̂ℓ}
−1
ℓ=−∞

)
does not depend on the particular

choice of x̂ℓ:

I
(
HT

0x̂0; {H
T

ℓ x̂ℓ}
−1
ℓ=−∞

)
= I

(
HT

0x̂0 − dTx̂0; {H
T

ℓ x̂ℓ − dTx̂ℓ}
−1
ℓ=−∞

)
(4.20)

= I
(
H̃T

0x̂0; {H̃
T

ℓ x̂ℓ}
−1
ℓ=−∞

)
(4.21)

= I
(
H̃T

0ê; {H̃T

ℓ ê}
−1
ℓ=−∞

)
(4.22)

= I
(
H

(1)
0 ; {H

(1)
ℓ }−1

ℓ=−∞

)
(4.23)

= log
1

ǫ2
. (4.24)

Equation (1.6) now follows from (4.10), Theorem 7, and Theorem 8 by noting that

max
‖x̂‖=1

|E[HT

k] x̂|
√

Var
(
HT

kx̂
) = max

‖x̂‖=1
|dTx̂| = ‖d‖, (4.25)

where the maximum is achieved for x̂ = d/‖d‖.
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Chapter 5

Proof of Main Results

Note that the proofs are in part pretty technical. We therefore recommend the
reader to firstly have a look at the overview given in Chapter 3.

5.1 Derivation of the Upper Bound of Theorem 7

Fix E > 0, let the positive integer κ be arbitrary, and fix ǫ > 0. Let η = η(E , ǫ) ∈ Z
+

and QE,ǫ = Q(E , ǫ) ∈ P(CnT) be the integer and the input distribution1 on C
nT

whose existence is guaranteed in Lemma 6. Let blocklength n and input Xn
1 satisfy

(3.7)–(3.10) so that, in particular,

C(E) ≤
1

n
I
(
Xn

1 ; Y n
1

)
+ ǫ (5.1)

=
1

n

n∑

k=1

I
(
Xn

1 ; Yk

∣
∣ Y k−1

1

)
+ ǫ. (5.2)

For 1 ≤ k ≤ η + κ − 1 and for n − 2η + 3 ≤ k ≤ n we use the crude bound

I
(
Xn

1 ; Yk

∣
∣ Y k−1

1

)
≤ I

(
Xk; Yk

)
+ I

(
H0;H

−1
−∞

)
(5.3)

≤ CIID(E) + I
(
H0;H

−1
−∞

)
, (5.4)

which is uniformly bounded in n. Here the second inequality follows from (3.9) and
(3.10). The first inequality can be derived as follows:

I
(
Xn

1 ; Yk

∣
∣ Y k−1

1

)
= I

(
Xn

1 , Y k−1
1 ; Yk

)
− I

(
Yk; Y

k−1
1

)
(5.5)

≤ I
(
Xn

1 , Y k−1
1 ; Yk

)
(5.6)

= I
(
Xk−1

1 , Y k−1
1 ,Xk; Yk

)
(5.7)

≤ I
(
Xk−1

1 , Y k−1
1 ,Hk−1

1 ,Xk; Yk

)
(5.8)

= I
(
Hk−1

1 ,Xk; Yk

)
(5.9)

= I(Xk; Yk) + I
(
Hk−1

1 ; Yk

∣
∣Xk

)
(5.10)

= I(Xk; Yk) + I
(
Hk−1

1 ;Xk, Yk

)
(5.11)

≤ I(Xk; Yk) + I
(
Hk−1

1 ;Hk,Xk, Yk

)
(5.12)

= I(Xk; Yk) + I
(
Hk−1

1 ;Hk

)
(5.13)

≤ I(Xk; Yk) + I
(
H0;H

−1
−∞

)
. (5.14)

1Given an alphabet A we denote the set of all distributions over A by P(A).
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Here the first equality follows from the chain rule; the subsequent inequality from
the non-negativity of mutual information; the subsequent equality follows because
we prohibit feedback; the subsequent inequality from the inclusion of the additional
random vectors Hk−1

1 in the mutual information term; (5.9) follows because, con-
ditional on the past fading and the present input, the past inputs and outputs are
independent of the present output Yk; the subsequent equality follows from the chain
rule; the following three steps are analogous to the first steps; and the last inequal-
ity follows once more from the inclusion of additional random vectors in the mutual
information.

We conclude that

C(E) ≤ lim
n↑∞

1

n
I
(
Xn

1 ; Y n
1

)
+ ǫ (5.15)

= lim
n↑∞

1

n − κ − 3(η − 1)

n−2η+2
∑

k=η+κ

I
(
Xn

1 ; Yk

∣
∣ Y k−1

1

)
+ ǫ. (5.16)

This allows us to focus on η + κ ≤ k ≤ n − 2(η − 1) which guarantees that
Xk−κ, . . . ,Xk are each distributed according to QE,ǫ.

We now continue by further upper-bounding I
(
Xn

1 ; Yk

∣
∣ Y k−1

1

)
for such k:

I
(
Xn

1 ; Yk

∣
∣ Y k−1

1

)

= I
(
Xn

1 , Y k−1
1 ; Yk

)
− I

(
Yk; Y

k−1
1

)
(5.17)

≤ I
(
Xn

1 , Y k−1
1 ; Yk

)
(5.18)

= I
(
Xk−1

1 , Y k−1
1 ,Xk; Yk

)
(5.19)

≤ I
(
Xk−1

1 , Y k−1
1 ,Hk−κ−1

1 , {HT

ℓXℓ}
k−1
ℓ=k−κ,Xk; Yk

)
(5.20)

= I
(
Xk−1

k−κ,Hk−κ−1
1 , {HT

ℓXℓ}
k−1
ℓ=k−κ,Xk; Yk

)
(5.21)

= I(Xk; Yk) + I
(
Xk−1

k−κ; Yk

∣
∣Xk

)

︸ ︷︷ ︸

=0

+ I
(
{HT

ℓXℓ}
k−1
ℓ=k−κ; Yk

∣
∣Xk

k−κ

)

+ I
(
Hk−κ−1

1 ; Yk

∣
∣Xk

k−κ, {HT

ℓXℓ}
k−1
ℓ=k−κ

)
(5.22)

= I(Xk; Yk) + I
(
{HT

ℓXℓ}
k−1
ℓ=k−κ; Yk

∣
∣Xk

k−κ

)

+ I
(
Hk−κ−1

1 ; Yk

∣
∣Xk

k−κ, {HT

ℓXℓ}
k−1
ℓ=k−κ

)
, (5.23)

where the first three steps are identical to (5.5)–(5.7); (5.20) follows from the inclu-
sion of the additional random vectors Hk−κ−1

1 and the additional random variables
{HT

ℓXℓ}
k−1
ℓ=k−κ in the mutual information term; the subsequent equality follows be-

cause, conditional on the past terms Hk−κ−1
1 , {HT

ℓXℓ}
k−1
ℓ=k−κ, and on the present and

past inputs Xk
k−κ, the past outputs Y k−1

1 and the past inputs Xk−κ−1
1 are inde-

pendent of the present output Yk; the subsequent equality follows from the chain
rule; and the last equality from the independence of the past inputs and the present
output when conditioning on the present input.

We continue by bounding the last term in (5.23):

I
(
Hk−κ−1

1 ; Yk

∣
∣Xk

k−κ, {HT

ℓXℓ}
k−1
ℓ=k−κ

)

= I
(
Hk−κ−1

1 ; Yk,Xk

∣
∣Xk−1

k−κ, {HT

ℓXℓ}
k−1
ℓ=k−κ

)

− I
(
Hk−κ−1

1 ;Xk

∣
∣Xk−1

k−κ, {HT

ℓXℓ}
k−1
ℓ=k−κ

)
(5.24)

≤ I
(
Hk−κ−1

1 ; Yk,Xk

∣
∣Xk−1

k−κ, {HT

ℓXℓ}
k−1
ℓ=k−κ

)
(5.25)

≤ I
(
Hk−κ−1

1 ; Yk,Xk,Hk

∣
∣Xk−1

k−κ, {HT

ℓXℓ}
k−1
ℓ=k−κ

)
(5.26)
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= I
(
Hk−κ−1

1 ;Hk

∣
∣Xk−1

k−κ, {HT

ℓXℓ}
k−1
ℓ=k−κ

)
(5.27)

= I
(
Hk−κ−1

1 ;Hk

∣
∣ X̂k−1

k−κ, {HT

ℓX̂ℓ}
k−1
ℓ=k−κ

)
(5.28)

= E

[

I
(
Hk−κ−1

1 ;Hk

∣
∣ {X̂ℓ = x̂ℓ}

k−1
ℓ=k−κ, {HT

ℓ x̂ℓ}
k−1
ℓ=k−κ

)]

(5.29)

≤ sup
x̂

k−1
k−κ

I
(
Hk−κ−1

1 ;Hk

∣
∣ {HT

ℓ x̂ℓ}
k−1
ℓ=k−κ

)
(5.30)

= sup
ê
−1
−κ

I
(
H−κ−1

−k+1;H0

∣
∣ {HT

ℓ êℓ}
−1
ℓ=−κ

)
(5.31)

≤ sup
ê
−1
−κ

I
(
H−κ−1

−∞ ;H0

∣
∣ {HT

ℓ êℓ}
−1
ℓ=−κ

)
(5.32)

, δ(κ). (5.33)

Here, the first equality follows from the chain rule; the subsequent inequality from
the non-negativity of mutual information; the subsequent from inclusion of addi-
tional random vectors in the mutual information; the subsequent equality from the
independence of the present input and output on the past fading when conditioned
on the present fading; in the subsequent equality we introduce X̂ = X/‖X‖; (5.31)
follows from stationarity; and the subsequent inequality again from inclusion of ad-
ditional terms into the mutual information.

Note that δ(κ) does not depend on k anymore and tends to zero as κ tends to
infinity.

Hence, we continue with (5.23) as follows:

I
(
Xn

1 ; Yk

∣
∣ Y k−1

1

)

≤ I(Xk; Yk) + I
(
{HT

ℓXℓ}
k−1
ℓ=k−κ; Yk

∣
∣Xk

k−κ

)
+ δ(κ) (5.34)

≤ I(Xk; Yk) + I
(
{HT

ℓXℓ}
k−1
ℓ=k−κ; Yk,H

T

kXk

∣
∣Xk

k−κ

)
+ δ(κ) (5.35)

= I(Xk; Yk) + I
(
{HT

ℓXℓ}
k−1
ℓ=k−κ;HT

kXk

∣
∣Xk

k−κ

)

+ I
(
{HT

ℓXℓ}
k−1
ℓ=k−κ; Yk

∣
∣Xk

k−κ,HT

kXk

)

︸ ︷︷ ︸

=0

+ δ(κ) (5.36)

= I(Xk; Yk) + I
(
{HT

ℓXℓ}
k−1
ℓ=k−κ;HT

kXk

∣
∣Xk

k−κ

)
+ δ(κ) (5.37)

= I(Xk; Yk) + I
(
{HT

ℓXℓ}
k−1
ℓ=k−κ;HT

kXk

∣
∣ {‖Xℓ‖}

k
ℓ=k−κ, X̂k

k−κ

)
+ δ(κ) (5.38)

= I(Xk; Yk) + I
(
{HT

ℓX̂ℓ}
k−1
ℓ=k−κ;HT

kX̂k

∣
∣ X̂k

k−κ

)
+ δ(κ). (5.39)

Here (5.35) follows from the inclusion of the random variable HT

kXk in the mutual
information term; the subsequent equality from chain rule; (5.37) follows because
the additive noise Zk is independent of the fading Hk−1

k−κ; in the subsequent equality

we introduce X̂ℓ , Xℓ/‖Xℓ‖; and the final equality follows from dividing each term
by the magnitude of the input vectors.

Combined with (5.16) this yields

C(E) ≤ lim
n↑∞

1

n − κ − 3(η − 1)

n−2η+2
∑

k=η+κ

(

I(Xk; Yk)

+ I
(
HT

kX̂k; {H
T

ℓX̂ℓ}
k−1
ℓ=k−κ

∣
∣ X̂k

k−κ

)
)

+ δ(κ) + ǫ (5.40)

= lim
n↑∞

1

n − κ − 3(η − 1)

n−2η+2
∑

k=η+κ

(

I(Xk;H
T

0Xk + Z0)
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+ I
(
HT

0X̂k;H
T

−1X̂k−1, . . . ,H
T

−κX̂k−κ

∣
∣ X̂k

k−κ

)
)

+ δ(κ) + ǫ (5.41)

= I(X0;H
T

0X0 + Z0) + δ(κ) + ǫ

+ lim
n↑∞

1

n − κ − 3(η − 1)

n−2η+2
∑

k=η+κ

I
(
HT

0X̂k;H
T

−1X̂k−1, . . . ,H
T

−κX̂k−κ

∣
∣ X̂k

k−κ

)
.

(5.42)

Here the first equality follows from the stationarity of {Hk, Zk}; and the subsequent
equality follows from the fact that for all k ∈ {η, . . . , n − 2η + 2} the distribution
of Xk is QE,ǫ given in Lemma 6. Note that we have changed notation here: for
notational convenience we will assume from now on that also X0 ∼ QE,ǫ.

We continue to upper-bound the first term I(X0; Y0) under the constraint that
X0 ∼ QE,ǫ. Note that from Lemma 4 we now that QE,ǫ escapes to infinity, i.e.,
Pr

[
‖X0‖2 ≤ Elow

]
= 0 for some Elow ≥ 0.

I(X0; Y0) ≤ I(X0;H
T

0X0 + Z0, Z0) (5.43)

= I(X0; Z0) + I(X0;H
T

0X0 + Z0|Z0) (5.44)

= I(X0;H
T

0X0|Z0) (5.45)

= I(X0;H
T

0X0). (5.46)

We will now upper-bound this term by the bound given in Lemma 5:

I(X0;H
T

0X0) ≤ −hQE,ǫ

(
HT

0X0

∣
∣X0

)
+ log π + α log β + log Γ(α, ν/β)

+ (1 − α)EQE,ǫ

[
log

(
|HT

0X0|
2 + ν

)]
+

1

β
EQE,ǫ

[
|HT

0X0|
2
]
+

ν

β
, (5.47)

where α, β > 0, and ν ≥ 0 can be chosen freely. We fix these parameters and assume
0 < α < 1 such that 1 − α > 0. Then define

ǫν , sup
‖x‖2≥Elow

{
E
[
log

(
|HT

0x|
2 + ν

)]
− E

[
log |HT

0x|
2
] }

. (5.48)

Then

(1 − α)EQE,ǫ

[
log

(
|HT

0X0|
2 + ν

)]

= (1 − α)EQE,ǫ

[
log |HT

0X0|
2
]

+ (1 − α)EQE,ǫ

[
log

(
|HT

0X0|
2 + ν

)]
− (1 − α)EQE,ǫ

[
log |H0X0|

2
]

(5.49)

≤ (1 − α)EQE,ǫ

[
log |HT

0X0|
2
]

+ (1 − α) sup
‖x‖2≥Elow

{
E
[
log

(
|HT

0x|
2 + ν

)]
− E

[
log |H0x|

2
] }

(5.50)

= (1 − α)EQE,ǫ

[
log |HT

0X0|
2
]
+ (1 − α)ǫν (5.51)

≤ (1 − α)EQE,ǫ

[
log |HT

0X0|
2
]
+ ǫν . (5.52)

Plugging this into (5.47) yields

I(X0;H
T

0X0)

≤ EQE,ǫ

[
E
[
log |HT

0X0|
2
∣
∣ X0 = x0

]
− h

(
HT

0X0

∣
∣X0 = x0

)]

+ log π + log Γ(α, ν/β) + ǫν

+ α
(

log β − EQE,ǫ

[
log |HT

0X0|
2
] )

+
1

β
EQE,ǫ

[
|HT

0X0|
2
]
+

ν

β
(5.53)

23



= EQE,ǫ

[

E

[

log |HT

0X̂0|
2
∣
∣
∣ X̂0 = x̂0

]

− h
(
HT

0X̂0

∣
∣X̂0 = x̂0

)]

+ log π + log Γ(α, ν/β) + ǫν

+ α
(

log β − EQE,ǫ

[
log |HT

0X0|
2
] )

+
1

β
EQE,ǫ

[

|HT

0X̂0|
2 · ‖X0‖

2
]

+
ν

β
(5.54)

≤ EQE,ǫ

[

log |HT

0X̂0|
2
]

− hQE,ǫ

(
HT

0X̂0

∣
∣X̂0

)
+ log π + log Γ(α, ν/β) + ǫν

+ α
(

log β − inf
‖x‖2≥Elow

E
[
log |HT

0x|
2
] )

+
1

β
sup

‖x̂‖=1
E
[
|HT

0x̂|
2
]
· EQE,ǫ

[
‖X0‖

2
]

+
ν

β
(5.55)

= EQE,ǫ

[

log |HT

0X̂0|
2
]

− hQE,ǫ

(
HT

0X̂0

∣
∣X̂0

)
+ log π + log Γ(α, ν/β) + ǫν

+ α
(

log β − log Elow − ξ
)

+
1

β
sup

‖x̂‖=1
E
[
|HT

0x̂|
2
]
· E +

ν

β
. (5.56)

Here, the first inequality follows from (5.47) using bound (5.52); in the subsequent
equality we split X0 up into its magnitude ‖X0‖ and direction X̂0 and used the
scaling property of differential entropy of complex random variables; and the final
equality follows from the following definition:

EQE,ǫ

[
log |HT

0X0|
2
]
≥ inf

‖x‖2≥Elow

E
[
log |HT

0x|
2
]

(5.57)

= log Elow + inf
‖x̂‖=1

E
[
log |HT

0x̂|
2
]

(5.58)

, log Elow + ξ. (5.59)

Here the last line should be taken as a definition for ξ. Notice that

−∞ < ξ < ∞ (5.60)

as can be argued as follows: the lower bound on ξ follows from [7, Lemma 6.7f)], [2,
Lemma A.15f)] because h(H0) > −∞ and E

[
‖H0‖2

]
< ∞. The upper bound on ξ

can be verified using the concavity of the logarithm function and Jensen’s inequality.
Plugging (5.56) into (5.42) yields the following bound on capacity:

C(E) ≤ E

[

log |HT

0X̂0|
2
]

− h
(
HT

0X̂0

∣
∣X̂0

)
+ log π + log Γ(α, ν/β) + ǫν

+ α
(

log β − log Elow − ξ
)

+
1

β
sup

‖x̂‖=1
E
[
|HT

0x̂|
2
]
· E +

ν

β
+ δ(κ) + ǫ

+ lim
n↑∞

1

n − κ − 3(η − 1)

n−2η+2
∑

k=η+κ

I
(
HT

0X̂k;H
T

−1X̂k−1, . . . ,H
T

−κX̂k−κ

∣
∣ X̂k

k−κ

)
.

(5.61)

Note that in this upper bound there are no terms that depend simultaneously on
X̂k and ‖Xk‖. Hence, even if according to the (unknown) capacity-achieving input
distribution there is a dependence between direction and magnitude, this dependence
has no influence on this upper bound. We may therefore, without loss of generality,
assume that {X̂k} ⊥⊥ {‖Xk‖}. Therefore we may assume that {X̂k} does not depend
on the value of E .

Next we use this bound in order to get an upper bound on the fading number of
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MISO fading channels with memory:

χ({HT

k})

= lim
E↑∞

{

C(E) − log

(

1 + log

(

1 +
E

σ2

))}

(5.62)

≤ lim
E↑∞

{

E

[

log |HT

0X̂0|
2
]

− h
(
HT

0X̂0

∣
∣X̂0

)
+ log π + ǫν + δ(κ) + ǫ

+ lim
n↑∞

1

n − κ − 3(η − 1)

n−2η+2
∑

k=η+κ

I
(
HT

0X̂k;H
T

−1X̂k−1, . . . ,H
T

−κX̂k−κ

∣
∣ X̂k

k−κ

)

+ log Γ(α, ν/β) + α
(

log β − log Elow − ξ
)

+
1

β
sup

‖x̂‖=1
E
[
|HT

0x̂|
2
]
· E +

ν

β

− log

(

1 + log

(

1 +
E

σ2

))}

(5.63)

= E

[

log |HT

0X̂0|
2
]

− h
(
HT

0X̂0

∣
∣X̂0

)
+ log π + ǫν + δ(κ) + ǫ

+ lim
n↑∞

1

n − κ − 3(η − 1)

n−2η+2
∑

k=η+κ

I
(
HT

0X̂k;H
T

−1X̂k−1, . . . ,H
T

−κX̂k−κ

∣
∣ X̂k

k−κ

)

+ lim
E↑∞

{

log Γ(α, ν/β) − log
1

α
+ α

(

log β − log Elow − ξ
)

+
1

β
sup

‖x̂‖=1
E
[
|HT

0x̂|
2
]
· E +

ν

β

+ log
1

α
− log

(

1 + log

(

1 +
E

σ2

))}

(5.64)

= E

[

log |HT

0X̂0|
2
]

− h
(
HT

0X̂0

∣
∣X̂0

)
+ log π + ǫν + δ(κ) + ǫ

+ lim
n↑∞

1

n − κ − 3(η − 1)

n−2η+2
∑

k=η+κ

I
(
HT

0X̂k;H
T

−1X̂k−1, . . . ,H
T

−κX̂k−κ

∣
∣ X̂k

k−κ

)

+ log
(
1 − e−ν

)
+ ν − log ν. (5.65)

Here, (5.64) follows because, as mentioned above, we may assume that

{X̂k} ⊥⊥ {‖Xk‖}, (5.66)

and from combining the mutual information and the differential entropy terms; in
the last equation we have made the following choices on the free parameters α and
β:

α , α(E) =
ν

log E + log sup‖x̂‖=1 E[|HT

0x̂|
2]

; (5.67)

β , β(E) =
1

α(E)
eν/α. (5.68)

For this choice note that

lim
E↑∞

{

log Γ(α, ν/β) − log
1

α

}

= log
(
1 − e−ν

)
; (5.69)

lim
E↑∞

α
(

log β − log Elow − ξ
)

= ν; (5.70)
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lim
E↑∞

{

1

β
sup

‖x̂‖=1
E
[
|HT

0x̂|
2
]
· E +

ν

β

}

= 0; (5.71)

lim
E↑∞

{

log
1

α
− log

(

1 + log

(

1 +
E

σ2

))}

= − log ν. (5.72)

(Compare with [7, Appendix VII], [2, Sec. B.5.9].)
To finish the derivation of the upper bound, we upper-bound the only term that

still depends on n as follows:

lim
n↑∞

1

n − κ − 3(η − 1)

n−2η+2
∑

k=η+κ

I
(
HT

0X̂k;H
T

−1X̂k−1, . . . ,H
T

−κX̂k−κ

∣
∣ X̂k

k−κ

)

≤ lim
n↑∞

1

n − κ − 3(η − 1)

n−2η+2
∑

k=η+κ

sup
Q

X̂
0
−κ

with marg. QE,ǫ

I
(
HT

0X̂0; {H
T

ℓX̂ℓ}
−1
ℓ=−κ

∣
∣ X̂0

−κ

)
(5.73)

= lim
n↑∞







sup
Q

X̂
0
−κ

with marg. QE,ǫ

I
(
HT

0X̂0; {H
T

ℓX̂ℓ}
−1
ℓ=−κ

∣
∣ X̂0

−κ

)
·

1

n − κ − 3(η − 1)

n−2η+2
∑

k=η+κ

1







(5.74)

= sup
Q

X̂
0
−κ

with marg. QE,ǫ

I
(
HT

0X̂0; {H
T

ℓX̂ℓ}
−1
ℓ=−κ

∣
∣ X̂0

−κ

)
. (5.75)

Here again we use the fact given in Lemma 6 that the marginal distribution of {X̂k}
is QE,ǫ. We therefore are allowed to change notation accordingly and use the same

X̂0 as introduced above.
Next, we let ν go to zero. Note that ǫν → 0 as ν ↓ 0 as can be seen from (5.48).

Note further that
lim
ν↓0

{
log

(
1 − e−ν

)
− log ν

}
= 0. (5.76)

Therefore, we get

χ({HT

k}) ≤ E

[

log |HT

0X̂0|
2
]

− h
(
HT

0X̂0

∣
∣X̂0

)
+ log π + δ(κ) + ǫ

+ sup
Q

X̂
0
−κ

with marg. QE,ǫ

I
(
HT

0X̂0; {H
T

ℓX̂ℓ}
−1
ℓ=−κ

∣
∣ X̂0

−κ

)
(5.77)

= sup
Q

X̂
0
−κ

with marg. QE,ǫ

{

E

[

log |HT

0X̂0|
2
]

− h
(
HT

0X̂0

∣
∣X̂0

)
+ log π + δ(κ) + ǫ

+ I
(
HT

0X̂0; {H
T

ℓX̂ℓ}
−1
ℓ=−κ

∣
∣ X̂0

−κ

)

}

(5.78)

= sup
Q

X̂
0
−κ

with marg. QE,ǫ

{

log π + E

[

log |HT

0X̂0|
2
]

− h
(
HT

0X̂0

∣
∣ {HT

ℓX̂ℓ}
−1
ℓ=−κ, X̂0

−κ

)
}

+ δ(κ) + ǫ (5.79)
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= sup
Q

X̂
0
−κ

with marg. QE,ǫ

EQ
X̂

0
−κ

[

log π + E

[

log |HT

0X̂0|
2
∣
∣
∣ X̂0 = x̂0

]

− h
(
HT

0X̂0

∣
∣ {HT

ℓX̂ℓ}
−1
ℓ=−κ, X̂0

−κ = x̂0
−κ

)
]

+ δ(κ) + ǫ

(5.80)

≤ sup
x̂0
−κ

{

log π + E
[
log |HT

0x̂0|
2
]
− h

(
HT

0x̂0

∣
∣ {HT

ℓ x̂ℓ}
−1
ℓ=−κ

)}

+ δ(κ) + ǫ.(5.81)

Here, (5.78) follows since the first couple of terms only depend on the marginal dis-
tribution QE,ǫ which is kept constant for the maximization; the subsequent equality
follows from the definition of mutual information; and in the last inequality the
expectation is upper-bounded by the supremum.

Finally, we let κ go to infinity. The result now follows because ǫ is arbitrary and
because δ(κ) tends to zero for κ → ∞.

5.2 Derivation of the Lower Bound of Theorem 8

To derive a lower bound we choose a specific input distribution which naturally
yields a lower bound to channel capacity. Let {Xk} be of the form

Xk = Xk · x̂ (5.82)

where x̂ is a deterministic unit vector (which is therefore known to both the receiver
and transmitter) and where {Xk} is an IID circularly symmetric random process
with

log |Xk|
2 ∼ U

(
[log x2

min, log E ]
)
, (5.83)

where we choose x2
min as

x2
min = log E . (5.84)

Fix some (large) positive integer κ and use the chain rule and the non-negativity of
mutual information to obtain:

1

n
I
(
Xn

1 ; Y n
1

)
=

1

n

n∑

k=1

I
(
Xk; Y

n
1

∣
∣Xk−1

1

)
(5.85)

≥
1

n

n−κ∑

k=κ+1

I
(
Xk; Y

n
1

∣
∣Xk−1

1

)
. (5.86)

Then for every κ+1 ≤ k ≤ n−κ, we can use the fact that {Xk} is IID and circularly
symmetric to lower-bound I

(
Xk; Y

n
1

∣
∣Xk−1

1

)
as follows:

I
(
Xk; Y

n
1

∣
∣Xk−1

1

)

= I
(
Xkx̂; Y n

1

∣
∣ {Xℓx̂}

k−1
ℓ=1

)
(5.87)

= I
(
Xk; Y

n
1

∣
∣ Xk−1

1

)
(5.88)

= I
(
Xk; X

k−1
1 , Y n

1

)
(5.89)

≥ I
(
Xk; X

k−1
k−κ, Y k−1

k−κ , Yk

)
(5.90)

= I
(
Xk; X

k−1
k−κ, Y k−1

k−κ , Zk−1
k−κ, Yk

)
− I

(
Xk; Z

k−1
k−κ

∣
∣ Xk−1

k−κ, Y k−1
k−κ , Yk

)

︸ ︷︷ ︸

≤ǫ(xmin,κ)

(5.91)
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≥ I
(
Xk; X

k−1
k−κ, Y k−1

k−κ , Zk−1
k−κ, Yk

)
− ǫ(xmin, κ) (5.92)

= I
(
Xk; {H

T

ℓ x̂}
k−1
ℓ=k−κ, Yk

)
− ǫ(xmin, κ) (5.93)

= I
(
X0; {H

T

ℓ x̂}
−1
ℓ=−κ, Y0

)
− ǫ(xmin, κ) (5.94)

= I
(
X0; Y0

∣
∣ {HT

ℓ x̂}
−1
ℓ=−κ

)
− ǫ(xmin, κ), κ + 1 ≤ k ≤ n − κ. (5.95)

Here the second equality follows because {Xk} is chosen to be IID; in (5.90) we
drop some arguments which reduces the mutual information; next we use the chain
rule; in the subsequent inequality we lower-bound the second term by −ǫ(xmin, κ)
which is defined in Appendix B and is shown there to only depend on xmin and κ
and to tend to zero as xmin ↑ ∞; in the subsequent equality we use Xk−1

k−κ and Zk−1
k−κ

in order to extract {HT

ℓ x̂}
k−1
ℓ=k−κ from Y k−1

k−κ and then drop ({Xℓ, Yℓ, Zℓ}
k−1
ℓ=k−κ) since

given {HT

ℓ x̂}
k−1
ℓ=k−κ it is independent of the other random variables; and the equality

before last follows from stationarity.
Plugging (5.95) into (5.86) we get

1
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I
(
Xn

1 ; Y n
1

)
≥

1
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(
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(5.96)

=

(

1 −
2κ

n

) (

I
(
X0; Y0

∣
∣ {HT

ℓ x̂}
−1
ℓ=−κ

)
− ǫ(xmin, κ)

)

. (5.97)

Letting n tend to infinity we obtain

C(E) ≥ I
(
X0; Y0

∣
∣ {HT

ℓ x̂}
−1
ℓ=−κ

)
− ǫ(xmin, κ) (5.98)

where the first term on the RHS can be viewed as mutual information across a
memoryless SISO fading channel with fading H = HT

κ+1x̂ in the presence of the
side-information {HT

ℓ x̂}
κ
ℓ=1.

We next let the power grow to infinity E → ∞. Since the circularly symmetric
law (5.83) achieves the fading number of IID SISO fading with side-information [7,
Proposition 4.23], [2, Proposition 6.23] and since our choice (5.84) guarantees that
ǫ(xmin, κ) tend to zero as E → ∞ (see Appendix B) we obtain the bound

χ({HT

k}) ≥ χIID

(
HT

0x̂
∣
∣ {HT

ℓ x̂}
−1
ℓ=−κ

)
(5.99)

= log π + E
[
log |HT

0x̂|
2
]
− h

(
HT

0x̂
∣
∣{HT

ℓ x̂}
−1
ℓ=−κ

)
. (5.100)

Finally, we let κ go to infinity. The result now follows from choosing x̂ such as
to maximize this lower bound to the fading number.
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Chapter 6

Discussion & Conclusion

We have derived a new upper bound and a new lower bound on the fading number
of a MISO fading channel of general law including memory. The fading number is
the second term in the asymptotic expansion of channel capacity, i.e., the fading
number basically determines the capacity in the limit of infinite power.

The bounds are not identical, however, both bounds show the same structure
involving the maximization of a deterministic beam-direction x̂, which suggests that
beam-forming is optimal at high SNR. Be aware, however, that the beam-direction
is not chosen to maximize the SNR, but to maximize the fading number.

The differences between the upper and lower bound lies in the details of the
maximization: while in the lower bound one single direction unit vector x̂ is chosen
for all time, the upper bound allows for different realizations of x̂k for different times
k.

We are convinced that the lower bound is actually tight: intuition tells that for
our stationary channel model a stationary input should be sufficient for achieving
the capacity. As a matter of fact in the SISO and SIMO case it has been shown
that actually an IID input suffices to achieve capacity at high SNR [7], [2], [3].
Furthermore, in the derivation of the upper bound we use obviously loose bounds
on several places.

In the case of isotropically distributed fading the particular choice of direction
has no influence on the fading process and therefore the upper and lower bounds
coincide. Hence, we are able to specify the fading number of isotropically distributed
MISO fading processes precisely.

In the important special case of Gaussian fading we could show that the bounds
presented in [15] and [16] are special cases of the new bounds presented here, where
the new upper bound (3.11) is in general tighter than (1.7).

Note that in the derivation of the upper bound it is tempting to use the known re-
sults about memoryless MISO fading (e.g., in (5.42)). Unfortunately, this approach
fails because the memoryless MISO fading number involves a supremum over the
memoryless terms which afterward can not be incorporated anymore into a supre-
mum over all terms. Another, so far unsuccessful attempt, has been to reduce the
problem to a memoryless SISO situation. This leads to additional terms that take
into account the direction of the MISO input, however, we have not been able to
manipulate these terms such as to keep the upper bound tight.

We also would like to emphasize the importance of the preliminary results of
Section 3.1, particularly, the concept of distributions that escape to infinity and the
lemma about the stationarity of the capacity achieving input distribution. They
give some additional information about the capacity achieving input distribution
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that turned out to be crucial in the derivation of the bounds. We are convinced that
the more complex the channel model gets, the more one will need to rely on such
auxiliary results.

In future we are going to try to improve these results further aiming at the
precise derivation of the MISO fading number with memory. This will be a big step
forward to our ultimate goal: the exact expression of the fading number of the most
general fading channel model, i.e., general MIMO fading with memory. Note that
so far the fading number for fading with memory is known only in situations where
the transmitter has just one antenna. Hence the importance of MISO, being the
simplest non-trivial situation with multiple antennas at the transmitter side.
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Appendix A

Proof of Lemma 6

The proof follows the same lines as the proofs of [3, Lemma 5] and [2, Lemma B.1].
The proof is by a simple shift-and-mix argument. Recalling that

C(E) = lim
n↑∞

1

n
sup I(X1, . . . ,Xn; Y1, . . . , Yn) (A.1)

where the supremum is over all joint distributions on (X1, . . . ,Xn) ∈ C
nT×n under

which
∑n

k=1 E
[
‖Xk‖

2
]

= nE , we conclude that there must exist some integer η ≥ 1
and some joint distribution p∗ ∈ P(CnT×η) such that if (X1, . . . ,Xη) ∼ p∗ then

1

η

η
∑

ℓ=1

E
[
‖Xℓ‖

2
]

= E (A.2)

and
1

η
I(X1, . . . ,Xη; Y1, . . . , Yη) > C(E) −

ǫ

2
. (A.3)

Let Q be the probability law on C
nT that is the mixture of the η different

marginals of p∗. That is, for every Borel set B ⊂ C
nT

Q(B) =
1

η

η
∑

ℓ=1

p∗(Xℓ ∈ B). (A.4)

By (A.2) we have
∫

CnT

‖x‖2 dQ(x) = E . (A.5)

Let n now be given. We shall next describe the required input distribution as
follows. Let

ν =

⌊
n − η + 1

η

⌋

(A.6)

and let the infinite sequence X̃ of random nT-vectors be defined by

X̃ = (0, . . . ,0
︸ ︷︷ ︸

η−1

,Ξ
(1)
1 , . . . ,Ξ(1)

η
︸ ︷︷ ︸

η

, . . . , . . . ,Ξ
(ν)
1 , . . . ,Ξ(ν)

η
︸ ︷︷ ︸

η

,0,0, . . . (A.7)

so that

X̃ℓ =







0 if 1 ≤ ℓ ≤ η − 1,

Ξ
⌊ℓ/η⌋
(ℓ mod η)+1 if η ≤ ℓ ≤ (ν + 1)η − 1,

0 if ℓ ≥ (ν + 1)η,

(A.8)
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where 0 is the zero nT-vector and where

{(
Ξ

(j)
1 , . . . ,Ξ(j)

η

)}ν

j=1
∼ IID p∗. (A.9)

Notice that since the lead-in and trailing zeros have no effect on our channel, the
unnormalized mutual information induced by X̃ is lower-bounded by νη(C(E)−ǫ/2).
Again, since the lead-in and trailing zeros are of no consequence, this same mutual
information results if we shift X̃ by t, (provided that 0 ≤ t ≤ η − 1). Consequently,
if we define X1, . . . ,Xn by the mixture of the time shift of X̃, i.e.,

Xℓ = X̃ℓ+T , 1 ≤ ℓ ≤ n, (A.10)

where
T ∼ U ({0, . . . , η − 1}) (A.11)

is independent of X̃, then by the concavity of mutual information in the input
distribution we obtain that the unnormalized mutual information induced by Xn

1

is lower-bounded by νη(C(E) − ǫ/2), so that the normalized mutual information
satisfies

1

n
I (Xn

1 ; Y n
1 ) ≥

ην

n

(

C(E) −
ǫ

2

)

(A.12)

=
η

⌊
n−η+1

η

⌋

n

(

C(E) −
ǫ

2

)

, (A.13)

which exceeds C(E) − ǫ for sufficiently large n.
Except at the edges, the above mixture guarantees equal marginals of average

power E . The power in the edges can be smaller than E because of the mixture with
deterministic zero vectors.
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Appendix B

Additional Derivation for the

Proof of the Lower Bound

In the derivation of the lower bound to the fading number we need to find the
following upper bound

I
(
Xk; Z

k−1
k−κ

∣
∣ Xk−1

k−κY k−1
k−κ , Yk

)
≤ ǫ(xmin, κ) (B.1)

and to show that ǫ(xmin, κ) only depends on xmin and κ and tends to zero as xmin

tends to infinity.
To that goal we bound as follows:
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, ǫ(xmin, κ). (B.11)

Here (B.3) follows from conditioning that reduces entropy; in the subsequent equality
we use Xk and Zk in order to extract HT

kx̂ from Yk, and then we drop (Xk, Yk, Zk)
since given HT

kx̂ it is independent of the other random variables; and (B.8) follows
from stationarity.

From [7, Lemma 6.11], [2, Lemma A.19] we conclude that for every realization
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of HT

κ+1x̂ the expression

h

({

HT

ℓ x̂ +
Zℓ

xmin

}κ

ℓ=1

∣
∣
∣
∣
HT

κ+1x̂ = hT

κ+1x̂

)

(B.12)

converges monotonically in xmin to h
(
{HT

ℓ x̂}
κ
ℓ=1

∣
∣HT

κ+1x̂ = hT

κ+1x̂
)
. By the Mono-

tone Convergence Theorem (MCT) [25] this is also true when we average over HT

κ+1x̂.
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cona, Switzerland, February 24–27, 2003.

[9] ——, “Capacity bounds via duality with applications to multi-antenna systems
on flat fading channels,” Signal and Information Processing Laboratory, ETH
Zurich, Tech. Rep., June 25, 2002, preprint.

[10] ——, “On the fading number of multi-antenna systems over flat fading channels
with memory and incomplete side information,” in Proceedings IEEE Interna-
tional Symposium on Information Theory (ISIT), Lausanne, Switzerland, June
30 – July 5, 2002, p. 478.

[11] ——, “On the fading number of multi-antenna systems,” in Proceedings IEEE
Information Theory Workshop (ITW), Cairns, Australia, September 2–7, 2001,
pp. 110–111.

35



[12] ——, “Convex-programming bounds on the capacity of flat-fading channels,”
in Proceedings IEEE International Symposium on Information Theory (ISIT),
Washington DC, USA, June 24–29, 2001, p. 52.

[13] ——, “Limits on reliable communication over flat-fading channels,” in Proceed-
ings Winter School on Coding and Information Theory, Schloss Reisensburg,
Günzburg, University of Ulm, Germany, December 17–20, 2000.

[14] A. Lapidoth, “On the asymptotic capacity of stationary Gaussian fading chan-
nels,” IEEE Transactions on Information Theory, vol. 51, no. 2, pp. 437–446,
February 2005.

[15] T. Koch and A. Lapidoth, “Degrees of freedom in non-coherent stationary
MIMO fading channels,” in Proceedings Winter School on Coding and Infor-
mation Theory, Bratislava, Slovakia, February 20–25, 2005, pp. 91–97.

[16] ——, “The fading number and degrees of freedom in non-coherent MIMO fading
channels: a peace pipe,” in Proceedings IEEE International Symposium on
Information Theory (ISIT), Adelaide, Australia, September 4–9, 2005, pp. 661–
665.

[17] A. Lapidoth, “On the high SNR capacity of stationary Gaussian fading chan-
nels,” in Proceedings Forty-First Allerton Conference on Communication, Con-
trol and Computing, Allerton House, Monticello, Illinois, October 1–3, 2003,
pp. 410–419.

[18] T. Koch, “On the asymptotic capacity of multiple-input single-output fading
channels with memory,” Master’s thesis, Signal and Information Processing
Laboratory, ETH Zurich, Switzerland, April 2004, supervised by Prof. Dr. Amos
Lapidoth.

[19] A. Lapidoth and S. M. Moser, “On non-coherent fading channels with feed-
back,” in Proceedings Winter School on Coding and Information Theory,
Bratislava, Slovakia, February 20–25, 2005, pp. 113–118.

[20] A. Lapidoth, “On the high-SNR capacity of noncoherent networks,” IEEE
Transactions on Information Theory, vol. 51, no. 9, pp. 3025–3036, Septem-
ber 2005.

[21] ——, “On the capacity of non-coherent fading networks,” in Proceedings Third
Joint Workshop on Communications and Coding (JWCC), Donnini-Firenze,
Italy, October 14–17, 2004.

[22] ——, “Capacity bounds via duality: a phase noise example,” in Proceedings
Second Asian-European Workshop on Information Theory, Breisach, Germany,
June 26–29, 2002.

[23] ——, “On phase noise channels at high SNR,” in Proceedings IEEE Information
Theory Workshop (ITW), Bangalore, India, October 20–25, 2002, pp. 1–4.

[24] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press,
1985.

[25] H. A. Priestley, Introduction to Integration. Oxford University Press, 1997.

36


