

The Fading Number of Memoryless Multiple-Input Multiple-Output Fading Channels

Stefan M. Moser*

Department of Communication Engineering
National Chiao Tung University (NCTU)

Hsinchu, Taiwan

Email: stefan.moser@ieee.org

1 Channel Model

We consider a multiple-input multiple-output fading channel:

$$\mathbf{Y} = \mathbb{H}\mathbf{x} + \mathbf{Z}$$

where

- $\mathbf{Y} \in \mathbb{C}^{n_R}$ denotes the random channel output vector (**n_R receive antennas**);
- $\mathbf{Z} \sim \mathcal{N}_{\mathbb{C}}(\mathbf{0}, \sigma^2 \mathbf{I}_{n_R})$ denotes additive white (complex) **Gaussian noise**;
- $\mathbf{x} \in \mathbb{C}^{n_T}$ denotes the channel input vector (**n_T transmit antennas**) satisfying either a peak-power or an average-power constraint \mathcal{E} with signal-to-noise ratio $\text{SNR} \triangleq \frac{\mathcal{E}}{\sigma^2}$;
- \mathbb{H} denotes the random $n_R \times n_T$ fading matrix of **general** (not necessarily Gaussian!) **law**: we only assume that \mathbb{H} has finite second moment $\mathbb{E}[\|\mathbb{H}\|_F^2] < \infty$ and finite differential entropy $h(\mathbb{H}) > -\infty$ (the **regularity** assumption). Note that the components of \mathbb{H} may be dependent (**spatial memory**). The realizations of \mathbb{H} are **unknown** both at transmitter and receiver (**non-coherent decoding**).

2 Channel Capacity

We know that for such regular, non-coherent fading channels the capacity grows double-logarithmically at very high power ($\text{SNR} \rightarrow \infty$):

$$C(\text{SNR}) = \log(1 + \log(1 + \text{SNR})) + \chi(\mathbb{H}) + o(1)$$

where $o(1)$ tends to zero as $\text{SNR} \rightarrow \infty$ and where $\chi(\mathbb{H})$ is a constant called **fading number** that is independent of SNR, but depends on the distribution of \mathbb{H} .

*This work was supported by the National Science Council, Taiwan, under NSC 95-2221-E-009-046 and by the Industrial Technology Research Institute (ITRI), Zhudong, Taiwan, under contract G1-96001.

3 Main Results

Lemma 1. *Any capacity-achieving input distribution must **escape to infinity**. This means that for $\text{SNR} \rightarrow \infty$ the capacity-achieving input distributions will not use any finite-cost input symbols.*

Lemma 2. *The capacity-achieving input can be assumed to be **circularly symmetric**, i.e., the input \mathbf{X} can be replaced by $\mathbf{X}e^{j\Theta}$, where $\Theta \sim \mathcal{U}([0, 2\pi])$ and is independent of every other random quantity.*

Theorem 3. *The memoryless multiple-input multiple-output (MIMO) fading number $\chi(\mathbb{H})$ is given by*

$$\chi(\mathbb{H}) = \sup_{Q_{\hat{\mathbf{X}}}} \left\{ h_{\lambda} \left(\frac{\mathbb{H}\hat{\mathbf{X}}}{\|\mathbb{H}\hat{\mathbf{X}}\|} \right) + n_R \mathbb{E} \left[\log \|\mathbb{H}\hat{\mathbf{X}}\|^2 \right] - \log 2 - h(\mathbb{H}\hat{\mathbf{X}} \mid \hat{\mathbf{X}}) \right\}$$

where the supremum is taken over all distributions of the **random unit vector** $\hat{\mathbf{X}}$. Note that $h_{\lambda}(\cdot)$ denotes a differential entropy for random vectors that take value on the unit sphere in \mathbb{C}^{n_R} .

Moreover, this fading number is **achievable** by a random vector $\mathbf{X} = \hat{\mathbf{X}} \cdot R$ where $\hat{\mathbf{X}}$ is distributed according to the distribution that achieves the fading number above and where R is a non-negative random variable independent of $\hat{\mathbf{X}}$ such that

$$\log R^2 \sim \mathcal{U}([\log \log \mathcal{E}, \log \mathcal{E}]).$$

References

- [1] S. M. Moser, "The fading number of memoryless multiple-input multiple-output fading channels," *IEEE Transactions on Information Theory*, vol. 53, no. 7, pp. 2652–2666, July 2007.