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Abstract

The non-central chi-square distribution plays an important role in commu-
nications, for example in the analysis of mobile and wireless communication
systems. It not only includes the important cases of a squared Rayleigh distri-
bution and a squared Rice distribution, but also the generalizations to a sum
of independent squared Gaussian random variables of identical variance with
or without mean, i.e., a “squared MIMO Rayleigh” and “squared MIMO Rice”
distribution.

In this paper closed-form expressions are derived for the expectation of the
logarithm and for the expectation of the n-th power of the reciprocal value of
a non-central chi-square random variable. It is shown that these expectations
can be expressed by a family of continuous functions gm(·) and that these
families have nice properties (monotonicity, convexity, etc.). Moreover, some
tight upper and lower bounds are derived that are helpful in situations where
the closed-form expression of gm(·) is too complex for further analysis.

Index Terms: Non-central chi-square distribution, Rayleigh, Rice, expected loga-
rithm, expected reciprocal value.

1 Introduction

It is well known that adding several independent squared Gaussian random vari-
ables of identical variance yields a random variable that is non-central chi-square
distributed. This distribution often shows up in information theory and communi-
cations. As an example we mention the situation of a non-coherent multiple-input
multiple-output (MIMO) fading channel

Y = Hx + Z (1)

with an additive white Gaussian noise vector Z and with a fading matrix H that
consists of independent and unit-variance Gaussian distributed components with or
without mean. Here conditional on the input x the squared magnitude of the output
‖Y‖2 is non-central chi-square distributed.
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While the special case of a squared Rayleigh distribution1 is well understood
in the sense that there exist closed-form expressions for more or less all interesting
expected values, the more general situation of a non-central chi-square distribution
is far more complex. Here, standard integration tools (e.g., Maple) or integration
lookup tables (e.g., [2]) will very quickly cease to provide closed-form expressions.

In this paper we will state closed-form expressions for some of these situations:
we will give closed-form solutions to E[lnV ] and E

[
1

V n

]
for a non-central chi-square

random variable V with an even number of degrees of freedom. Note that in practice
we often have an even number of degrees of freedom because we usually consider
complex Gaussian random variables consisting of two real Gaussian components.
We will see that these expectations are all related to a family of functions gm(·)
that is defined in Definition 2 in the following section. There we will also state the
main results. In Section 3 we will then derive some properties of the functions gm(·)
and in Section 4 we will state tight upper and lower bounds. In Section 5 another
property of gm(·) is derived as an example of how the bounds from Section 4 could
be applied. We conclude in Section 6.

2 Definitions and Main Results

A non-negative real random variable is said to have a non-central chi-square distri-
bution with n degrees of freedom and non-centrality parameter s2 if it is distributed
like

n∑

j=1

(Xj + µj)
2, (2)

where {Xj}n
j=1 are IID ∼ NR (0, 1) and the real constants {µj}n

j=1 satisfy

s2 =
n∑

j=1

µ2
j . (3)

(The distribution of (2) depends on the constants {µj} only via the sum of their
squares.) The probability density function of such a distribution is given by [3,
Chapter 29]

1

2

( x

s2

)n−2
4
e−

s2+x
2 In/2−1

(
s
√
x
)
, x ≥ 0. (4)

Here Iν(·) denotes the modified Bessel function of the first kind of order ν ∈ R, i.e.,

Iν(x) ,

∞∑

k=0

1

k! Γ(ν + k + 1)

(x

2

)ν+2k
, x ≥ 0 (5)

(see [2, Equation 8.445]).
If the number of degrees of freedom n is even, i.e., if n = 2m for some positive

integer m, then the non-central chi-square distribution can also be expressed as a
sum of the squared norms of complex Gaussian random variables:

Definition 1. Let the random variable V have a non-central chi-square distribution

with an even number 2m of degrees of freedom, i.e.,

V ,

m∑

j=1

∣
∣Uj + µj

∣
∣2 (6)

1A squared Rayleigh random variable is actually exponentially distributed.
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where {Uj}m
j=1 are IID ∼ NC(0, 1), and {µj}m

j=1 are complex constants. Let further

the non-centrality parameter s2 be defined as

s2 ,

m∑

j=1

|µj |2. (7)

Next we define the following continuous functions:

Definition 2. The functions gm(·) are defined as follows:

gm(ξ) ,







ln(ξ) − Ei(−ξ) +

m−1∑

j=1

(−1)j

[

e−ξ(j − 1)!

− (m− 1)!

j(m− 1 − j)!

] (
1

ξ

)j

, ξ > 0

ψ(m), ξ = 0

(8)

for m ∈ N, where Ei(·) denotes the exponential integral function defined as

Ei(−x) , −
∫ ∞

x

e−t

t
dt, x > 0 (9)

and ψ(·) is Euler’s psi function given by

ψ(m) , −γ +

m−1∑

j=1

1

j
(10)

with γ ≈ 0.577 denoting Euler’s constant.

Note that gm(ξ) is continuous for all ξ ≥ 0, i.e., in particular

lim
ξ↓0

{

ln(ξ)−Ei(−ξ)+
m−1∑

j=1

(−1)j

[

e−ξ(j−1)!− (m− 1)!

j(m− 1 − j)!

](
1

ξ

)j
}

= ψ(m) (11)

for all m ∈ N. Therefore its first derivative is defined for all ξ ≥ 0 and can be
evaluated to

g′m(ξ) ,
∂gm(ξ)

∂ξ
=

(−1)mΓ(m)

ξm



e−ξ −
m−1∑

j=0

(−1)j

j!
ξj



 (12)

(see [4, Eq. (417)], [5, Eq. (A.39)]). Note that g′m(·) is also continuous, i.e., in
particular

lim
ξ↓0







(−1)mΓ(m)

ξm



e−ξ −
m−1∑

j=0

(−1)j

j!
ξj










=

1

m
= g′m(0). (13)

Now we give a closed-form expression for a first expectation of a non-central
chi-square random variable:
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Theorem 3. The expected value of the logarithm of a non-central chi-square random

variable with an even number 2m of degrees of freedom is given as

E[lnV ] = gm(s2), (14)

where V and s2 are defined in (6) and (7). Hence, we have the solution to the

following integral:

∫ ∞

0
ln v ·

( v

s2

)m−1
2
e−v−s2

Im−1(2s
√
v) dv = gm(s2) (15)

for any m ∈ N and s2 ≥ 0.

Proof. A proof can be found in [4, Lem. 10.1], [5, Lem. A.6]

Next we derive the following expectations:

Theorem 4. Let n ∈ N with n < m. The expected value of the n-th power reciprocal

value of a non-central chi-square random variable with an even number 2m of degrees

of freedom is given as

E

[
1

V n

]

=
(−1)n−1

(n− 1!)
· g(n)

m−n(s2), m > n (16)

where

g(ℓ)
m (ξ) =

∂ℓgm(ξ)

∂ξℓ
(17)

denotes the ℓ-th derivative of gm(·) and where V and s2 are defined in (6) and (7).
In particular, for m > 1

E

[
1

V

]

= g′m−1(s
2). (18)

Hence, we have the solution to the following integral:

∫ ∞

0

1

vn
·
( v

s2

)m−1
2
e−v−s2

Im−1(2s
√
v) dv =

(−1)n−1

(n− 1!)
· g(n)

m−n(s2) (19)

for any m,n ∈ N, m > n, and any real s2 ≥ 0.

Note that in the cases where m ≤ n, the expectation is unbounded.

Proof. A proof can be found in Appendix A.

3 Properties of gm(·) and g
′
m(·)

In this section we will show that the family of functions gm(·) and g′m(·) are well-
behaved.

Corollary 5. The functions gm(·) are monotonically strictly increasing and strictly

concave in the interval [0,∞) for all m ∈ N.
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Proof. From [4, Eqs. (415), (416)], [5, Eqs. (A.37), (A.38)] we know that

g′m(ξ) =
∂gm(ξ)

∂ξ
= e−ξ

∞∑

k=0

1

k!
· 1

k +m
· ξk, (20)

g′′m(ξ) =
∂2gm(ξ)

∂ξ2
= −e−ξ

∞∑

k=0

1

k!
· 1

(k +m)(k +m+ 1)
· ξk, (21)

i.e., the first derivative of gm(·) is positive and the second derivative is negative.

Corollary 6. The function gm(ξ) is monotonically strictly increasing in m for all

ξ ≥ 0.

Proof. Fix two arbitrary natural numbers m1,m2 ∈ N such that m1 < m2. Choose
µ1 = s, µ2 = . . . = µm2 = 0, with an arbitrary s ≥ 0. Let {Uj}m2

j=1 be IID ∼ NC(0, 1).
Then

gm2(s
2) = E



ln





m2∑

j=1

|Uj + µj |2






 (22)

= E



ln





m1∑

j=1

|Uj + µj |2 +

m2∑

j=m1+1

|Uj + µj |2






 (23)

> E



ln





m1∑

j=1

|Uj + µj |2






 (24)

= gm1(s
2), (25)

where the first equality follows from (14); the subsequent equality from splitting the
sum into two parts; the subsequent inequality from dropping some positive terms;
and the final equality again from (14).

Corollary 7. The functions g′m(·) are positive, monotonically strictly decreasing,

and strictly convex functions for all m ∈ N.

Proof. The positivity and the monotonicity follow from (20) and (21). To see the
convexity, compute from (21)

g′′′m(ξ) =
∂3gm(ξ)

∂ξ3
= e−ξ

∞∑

k=0

1

k!
· 2

(k +m)(k +m+ 1)(k +m+ 2)
· ξk (26)

which is positive.

Corollary 8. The function g′m(ξ) is monotonically strictly decreasing in m for all

ξ ≥ 0.

Proof. Fix two arbitrary natural numbers m1,m2 ∈ N such that m2 > m1 > 1.
Choose µ1 = s, µ2 = . . . = µm2 = 0, with an arbitrary s ≥ 0. Let {Uj}m2

j=1 be IID

Stefan M. Moser, April 27, 2007, submitted 5



∼ NC(0, 1). Then

g′m2−1(s
2) = E

[

1
∑m2

j=1 |Uj + µj |2

]

(27)

= E

[

1
∑m1

j=1 |Uj + µj |2 +
∑m2

j=m1+1 |Uj + µj |2

]

(28)

< E

[

1
∑m1

j=1 |Uj + µj |2

]

(29)

= g′m1−1(s
2), (30)

where the first equality follows from (18); the subsequent equality from splitting the
sum into two parts; the subsequent inequality from dropping some positive terms in
the denominator; and the final equality again from (18).

Theorem 9. We have the following relation:

gm+1(ξ) = gm(ξ) + g′m(ξ) (31)

for all m ∈ N and all ξ ≥ 0.

Proof. A proof is given in Appendix B.

Theorem 10. We have the following relation:

g′m+1(ξ) =
1

ξ
− m

ξ
g′m(ξ) (32)

for all m ∈ N and all ξ ≥ 0.

Proof. A proof is given in Appendix C.

4 Bounds on gm(·) and g
′
m(·)

In this section we derive some tight bounds on the functions gm(·) and g′m(·).

Theorem 11. The function g′m(·) can be bounded as follows:

1

ξ +m
≤ g′m(ξ) ≤ min

{
m+ 1

m(ξ +m+ 1)
,

1

ξ +m− 1

}

. (33)

Note that for ξ < m+1 the first of the two upper bounds is tighter than second, while

for ξ > m+ 1 the second is tighter. Moreover, the first upper bound coincides with

gm(ξ) for ξ = 0, and the second upper bound is asymptotically tight when ξ tends to

infinity.

Proof. A proof is given in Appendix D.

The bounds (33) are depicted in Figure 1 for the cases of m = 1, m = 3, and
m = 8.
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second upper bound (for ξ > m + 1)

first upper bound (for ξ < m + 1)

g′

m
(·)

lower bound

Figure 1: Upper and lower bounds on g′m(·) according to Theorem 11. The top four
curves correspond to m = 1, the middle four to m = 3, and the lowest group of four
curves to m = 8.
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m

(ξ
)

second upper bound

first upper bound

upper bound (35)

gm(·)

lower bound (34)

Figure 2: Upper and lower bounds on gm(·) according to (34) and (35) in Theo-
rem 12. The lowest curve corresponds to m = 1 (in this case all bounds coincides
with g1(·)), the next five curves correspond to m = 3, and the top five to m = 8.
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Figure 3: Upper and lower bounds on gm(·) according to (36) in Theorem 12. The
lowest three curves correspond to m = 1, the next three to m = 3, and the top three
to m = 8.

Theorem 12. For the functions gm(·) we state two sets of bounds. The first set is

tighter for smaller values of m:

gm(ξ) ≥ ln ξ − Ei(−ξ) +
m−1∑

j=1

1

ξ + j
, (34)

gm(ξ) ≤ ln ξ − Ei(−ξ) +
m−1∑

j=1

min

{
j + 1

j(ξ + j + 1)
,

1

ξ + j − 1

}

. (35)

Secondly, we give a set of bounds that is tight for large values of m:

ln(ξ +m− 1) ≤ gm(ξ) ≤ ln(ξ +m). (36)

Note that this second set of bounds is very simple, i.e., it is particularly interesting

for further analysis.

Proof. A proof is given in Appendix E.

The bounds (34) and (35) are depicted in Figure 2 and the bounds (36) in
Figure 3, both times for the cases of m = 1, m = 3, and m = 8.

5 Additional Properties

As an example of how the properties given in Section 3 and the bounds given in
Section 4 can be used to derive further results we state the following corollary:
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Corollary 13. The functions gm

(
1
ξ

)

are monotonically strictly decreasing and con-

vex in ξ for all m ∈ N.

Proof. We start as follows:

∂

∂ξ
gm

(
1

ξ

)

= − 1

ξ2
· g′m

(
1

ξ

)

(37)

= − 1

ξ2

(

gm+1

(
1

ξ

)

− gm

(
1

ξ

))

, (38)

where the last equality follows from Theorem 9. From Corollary 7 we know that

g′m(·) > 0, so that we can conclude from (37) that gm

(
1
ξ

)

is monotonically strictly

decreasing.
To check convexity, we continue as follows:

∂2

∂ξ2
gm

(
1

ξ

)

=
2

ξ3
gm+1

(
1

ξ

)

+
1

ξ4
g′m+1

(
1

ξ

)

− 2

ξ3
gm

(
1

ξ

)

− 1

ξ4
g′m

(
1

ξ

)

(39)

=
2

ξ3
g′m

(
1

ξ

)

+
ξ −mξg′m

(
1
ξ

)

− g′m

(
1
ξ

)

ξ4
(40)

= g′m

(
1

ξ

)

· 2ξ −mξ − 1

ξ4
+

1

ξ3
(41)

≥ 1
1
ξ +m

· 2ξ −mξ − 1

ξ4
+

1

ξ3
(42)

=
2

ξ2(mξ + 1)
. (43)

Here, in the second equality we use Theorems 9 and 10; and the inequality follows
from the lower bound of Theorem 11. Hence, the second derivative is positive and
the statement proved.

6 Conclusions

We have derived closed-form expressions for some important expectations in the
field of information theory and communications. We have shown that the resulting
functions behave nicely and we have given tight upper and lower bounds to them.

For brevity we will not include a detailed example of how these results can be
used, but only mention that the derivation of the fading number of a non-coherent
MIMO Gaussian fading channel [6] strongly depends on them. There are many more
examples.

A Proof of Theorem 4

Let n ∈ N be arbitrary and assume that m > n. Then the required expectation can
be written as

E

[
1

V n

]

=

∫ ∞

0

1

vn
·
( v

s2

)m−1
2
e−v−s2

Im−1(2s
√
v) dv. (44)

Expressing Im−1(·) as a power series (5)

Im−1(z) =
∞∑

k=0

1

k! Γ(m+ k)

(z

2

)m−1+2k
(45)
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we obtain from [2, Eq. 3.351-3] (using that m > n)

E

[
1

V n

]

=
1

sm−1
e−s2

∞∑

k=0

1

k! Γ(m+ k)
s2k+m−1 ·

∫ ∞

0
vk+m−1−ne−v dv (46)

= e−s2
∞∑

k=0

1

k! (m+ k − 1)!
s2k · (k +m− 1 − n)! (47)

= e−s2
∞∑

k=0

1

k! (k +m− 1) · · · (k +m− n)
s2k. (48)

Generalizing (20), (21), and (26) to the ℓ-th derivative, we have

g(ℓ)
m (ξ) =

∂ℓgm(ξ)

∂ξℓ
= (−1)ℓ−1e−ξ

∞∑

k=0

1

k!
· (ℓ− 1)!

(k +m) · · · (k +m+ ℓ− 1)
· ξk. (49)

Comparing this with (48) we see that

E

[
1

V n

]

=
(−1)n−1

(n− 1!)
· g(n)

m−n(s2). (50)

B Proof of Theorem 9

Using (8) and (12) we get

gm(ξ) + g′m(ξ)

= ln(ξ) − Ei(−ξ) +
m−1∑

j=1

(−1)je−ξ(j − 1)!

(
1

ξ

)j

−
m−1∑

j=1

(−1)j (m− 1)!

j(m− 1 − j)!

(
1

ξ

)j

+
(−1)m(m− 1)!

ξm
e−ξ

−
m−1∑

i=0

(−1)i+m (m− 1)!

i!
ξi−m (51)

= ln(ξ) − Ei(−ξ) +
m∑

j=1

(−1)je−ξ(j − 1)!

(
1

ξ

)j

−
m−1∑

j=1

(−1)j (m− 1)!

j(m− 1 − j)!

(
1

ξ

)j

−
m∑

j=1

(−1)−j+2m

︸ ︷︷ ︸

=(−1)j

(m− 1)!

(m− j)!
ξ−j (52)

= ln(ξ) − Ei(−ξ) +
m∑

j=1

(−1)je−ξ(j − 1)!

(
1

ξ

)j

−
m−1∑

j=1

(−1)j(m− 1)!

(
1

j(m− 1 − j)!
+

1

(m− j)!

)

︸ ︷︷ ︸

= m
j(m−j)!

(
1

ξ

)j

− (−1)m (m− 1)!

0!

(
1

ξ

)m

(53)

= ln(ξ) − Ei(−ξ) +
m∑

j=1

(−1)je−ξ(j − 1)!

(
1

ξ

)j
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−
m−1∑

j=1

(−1)j(m− 1)!
m

j(m− j)!

(
1

ξ

)j

− (−1)m m!

m 0!

(
1

ξ

)m

(54)

= ln(ξ) − Ei(−ξ) +
m∑

j=1

(−1)je−ξ(j − 1)!

(
1

ξ

)j

−
m∑

j=1

(−1)j m!

j(m− j)!

(
1

ξ

)j

(55)

= gm+1(ξ). (56)

Here, the first equality follows from the definitions given in (8) and (12); in the
subsequent equality we combine the second last term with the first sum and reorder
the last summation by introducing a new counter-variable j = m− i; the subsequent
three equalities follows from arithmetic rearrangements; and the final equality follows
again from definition (8).

C Proof of Theorem 10

Using (20) we get

1

ξ
− m

ξ
g′m(ξ) =

1

ξ
e−ξ · eξ − m

ξ
e−ξ

∞∑

k=0

1

k!
· 1

k +m
· ξk (57)

=
1

ξ
e−ξ

∞∑

k=0

1

k!
· ξk − 1

ξ
e−ξ

∞∑

k=0

1

k!
· m

k +m
· ξk (58)

=
1

ξ
e−ξ

∞∑

k=0

1

k!

(

1 − m

k +m

)

ξk (59)

= e−ξ
∞∑

k=0

1

k!
· k

k +m
· ξk−1 (60)

= e−ξ
∞∑

k=1

1

(k − 1)!
· 1

k +m
· ξk−1 (61)

= e−ξ
∞∑

k=0

1

k!
· 1

k +m+ 1
· ξk (62)

= g′m+1(ξ). (63)

Here, the first equality follows from (20); in the subsequent equality we use the series
expansion of eξ which is valid for all ξ ≥ 0; the subsequent two equalities follow from
algebraic rearrangements; in the next equality we note that for k = 0 the terms in
the sum are equal to zero; the second last equality then follows from renumbering
the terms; and the last equality follows again from (20).

D Proof of Theorem 11

We start with the lower bound and note that for ξ = 0 the bound is tight:

g′m(0) = gm+1(0) − gm(0) = ψ(m+ 1) − ψ(m) =
1

m
(64)
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where the first equality follows from Theorem 9, the second from (8) and the final
from (10); and

1

ξ +m

∣
∣
∣
∣
ξ=0

=
1

m
. (65)

Moreover we notice that the bound is asymptotically tight, too:

lim
ξ↑∞

g′m(ξ) = 0; (66)

lim
ξ↑∞

1

ξ +m
= 0. (67)

Hence, since additionally both functions g′m(·) and 1
·+m are monotonically strictly

decreasing and strictly convex, they cannot cross. Moreover, it is shown2 in Theo-
rem 12 that gm(ξ) ≤ ln(ξ +m), so that we must have

g′m(ξ) ≥ ∂

∂ξ
ln(ξ +m) =

1

ξ +m
. (68)

Next we turn to the first upper bound which will follow from the lower bound
(33) derived above together with Theorem 10:

g′m−1(ξ) =
1 − ξg′m(ξ)

m− 1
≤

1 − ξ 1
ξ+m

m− 1
=

m

(m− 1)(ξ +m)
. (69)

To derive the second upper bound we use once again Theorem 10 and the lower
bound (33) derived above:

1

ξ +m− 1
− g′m(ξ) =

1

ξ +m− 1
− 1

ξ
+
m− 1

ξ
g′m−1(ξ) (70)

≥ 1

ξ +m− 1
− 1

ξ
+
m− 1

ξ

1

ξ +m− 1
(71)

= 0, (72)

where the first equality follows from Theorem 10 and the inequality from the lower
bound in (33).

E Proof of Theorem 12

The first set of bounds (34) and (35) follow directly from Theorems 9 and 11 and
from the fact that

g1(ξ) = ln ξ − Ei(−ξ) . (73)

The upper bound in the second set of bounds (36) has been proven before in [7,
App. B]. The proof is based on Jensen’s inequality.

The lower bound in (36) follows from a slightly more complicated argument: Note
that both gm(·) and ln(· +m− 1) are monotonically strictly increasing and strictly
concave (see Corollary 5). Hence, they can cross at most twice. Now asymptotically
as ξ ↑ ∞ the two functions coincide which corresponds to one of these “crossings.”
So they can only cross at most once more for finite ξ. For ξ = 0, we have

gm(0) = ψ(m) > ln(m− 1) (74)

2Note that this part of the proof of Theorem 12 does not rely in any way on the theorem under
consideration.
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for all m ∈ N (where for m = 1 we take ln 0 = −∞). Let’s assume for the moment
that there is another crossing for a finite value ξ0. Then, for ξ > ξ0, ln(ξ +m − 1)
is strictly larger than gm(ξ). However, since asymptotically they will coincide, the
slope of ln(·+m− 1) must then be strictly smaller than the slope of gm(·). But we
know from Theorem 11 that

∂

∂ξ
ln(ξ +m− 1) =

1

ξ +m− 1
≥ g′m(ξ). (75)

This is a contradiction which leads to the conclusion that there cannot be another
crossing and ln(· +m− 1) must be a strict lower bound to gm(·).
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