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Abstract— The capacity of regular noncoherent fading chan- term in the high-SNR asymptotic expansion of channel

nels grows like loglog SNR + x at high signal-to-noise ratios  capacity. In detail this means that the capacity can beemritt
(SNR). Here, x, denotedfading number, is a constant indepen-

dent of the SNR, but dependent on the distribution of the fading

process. Recently, an expression of the fading number has been C(sNR) = log(1 +log(1+ SNR)) + x +o(1) (1)
derived for the situation of general memoryless multiple-input o
multiple-output (MIMO) fading channels. In this paper, this ~ Whereo(1) tends to zero as the SNR tends to infinity. Note
expression is evaluated in the special situation of an independent that the fading numbel is a constantj.e., it does not
:""th a scalar line-of-sight componentd. It is shown that, for o 1o icylar probability distribution of the fading pess.
arge |d|, the fading number grows like min{nr,nr} log |d| . -
where nr and nt denote the number of antennas at the receiver [N Particular,y depends on channel parameters like line-of-
and transmitter, respectively. sight component, number of antennas, etc.

As a side-product along the way, closed-form expressions  Even though the fading number is defined for the (unre-
are derived for the expectation of the logarithm and for  gjistic) case of the SNR tending to infinity, it is relevant fo

the expectation of then-th power of the reciprocal value of . . T
a noncentral chi-square random variable. It is shown that practical purposes: it is an accurate indicator of the tolb

these expectations can be expressed by a family of continuous SNRo petween the pgwer_—efficignt low-SNR regime Where
functions ¢,.(-) and that these families have nice properties capacity grows logarithmically in the SNR and the highly

(monotonicity, concavity, etc.). Moreover, some tight upper and  inefficient high-SNR regime with double-logarithmic grdwt

lower bounds are derived that are helpful in situations where 14 see this connection betweanand SNR, first note that

rneassaied-form expression ol (+) is too complex for further a communication system is operating in the inefficient high-
' SNR region if and only if the approximation

I. INTRODUCTION

In this paper we study noncoherent communication over C(SNR) ~ log(1 +log(1 + SNR)) + x @

a flat fading channel. The termoncoherentrefers to the s a3 good approximationi.¢. the o(1) terms in (1) have
situation where neither transmitter nor receiver hav@iori  pecome negligible). In (2) is usually much larger than
knowledge of the fading realization (or channel state)slt ijoo 100 SNR unless the SNR is at extremely high values
assumed that only the probability law of the fading process yjarger thanec*!). Hence, for SNR values in the range of
known. We further assume that the procesee@ailar which  the thresholdsnr, the fading number will dominate the

means that the differential entropy rate of the processitefin 1. 100-term so that the capacity around the threshold can be
In an engineering explanation this means that the processggproximated by

“random enough” such that even with complete knowledge C(SNRy) ~ 3)
of the past fading realizations, the actual fading valuenoan X

be predicted error-free, but there will be always (a pogsiblin other words, ifC(SNR) is significantly larger thary, the
very small) nonzero prediction error. SNR must be larger thasnRy, i.e., the system is in the

It has been known for some time that the capacity of suchower-inefficientlog log-regime.
noncoherent fading channels typically grows only double- Recently, the fading number has been derived for gen-
logarithmically in the signal-to-noise ratio (SNR) at higheral multiple-input multiple-output (MIMO) fading chanise
SNR [1], [2]. Such a growth rate is extremely powerithout temporal memory [3]. Here we use the term “gen-
inefficient: increasing capacity by only one bit requires thera|” to describe the fact that no specific distribution hesrb
SNR to besquaredor, on a dB-scale, to be doubled! Hence agssumed for the fading proces¥he given expression in [3]
every communication system should be designed such thattherefore very general. On the other hand, the expression
it does not operate in this regime. is rather difficult to evaluate and is therefore partiallgihg

To quantify the rates at which this poor power efficiencysome insight. In this paper we would like to evaluate this
begins, [1], [2] introduce théading numbery as the second memoryless MIMO fading number in the special situation
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National Chiao Tung University (NCTU), Hsinchu, Taiwan.
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fading channel with a scalar line-of-sight compongéMle V, denotes a (deterministic or random, respectively) vector
will show that for a large line-of-sight component the of unit length

fading number basically grows like [¥v] = || V] = 1. )]
X = nmlog |d|? (4) To be able to work with sucHirection vectorsve shall need
a differential entropy-like quantity for random vectorsath
where take value on the unit sphere @™: let A denote the area
nm = min{ng, n7} (5 measure on the unit sphere @™. If a random vectorV

takes value in the unit sphere and has the densit;y\?)

is the degree of freedom of a MIMO fading channel aSyith respect to), then we shall let

defined,e.qg, in [4]. Here ng and nt denote the number of

antennas at the receiver and transmitter, respectively. hA(V) 2 _E [10g p%’ (\7)} (8)
As an interesting side-product we will derive so far

unknown closed-form expressions of some expectations ofifathe expectation is defined.

noncentral chi-square random variable: we will give clesed We note that just as ordinary differential entropy is invari

form solutions toE[log V] andE %] for a noncentral chi- ant under translation, so s, (V) invariant under rotation.

square random variablg with an even number of degrees That is, if U is a deterministic unitary matrix, then

of freedom. Note that in practice we often have an even o o

number of degrees of freedom because we usually consider In(UV) = (V). ©)

complexGaussian random variables consistingtwb real Also note thathA(\Af) is maximized if V is uniformly

Gaussian components. We will see that these expectatiodistributed on the unit sphere, in which case

are all related to a family of functiong,,(-) that is defined .

in Definition 3 in Section llI-A. We will also derive some ha(V) = logem (10)

useful bounds on these functions. wherec,, denotes the surface area of the unit spher&’in
The remainder of this paper is structured as follows. g

After some remarks about notation we will define the Cm = ———. (11)

channel model and specify all assumptions in Section II. I'(m)

In Section Il we give the preliminary results about some The definition (8) can be easily extended to conditional

expectations of a noncentral chi-square random varialale thentropies: ifW is some random vector, and if conditional

are interesting by themselves. The main results concerniog W = w the random vectoV has densityp%,lw(ﬂw)

the MIMO Gaussian fading number are then summarized ithen we can define

Section IV. We conclude in Section V. . a N .
We try to use upper-case letters for random quantities and ha (V ’ W = W) =-E {IngV|W(V|W) ’ W= W}

lower-case letters for their realizations. This rule, heare (12)

is broken when dealing with matrices and some constants. i A i i

To better differentiate between scalars, vectors, andiceatr and we can deﬂneh) (V|W) as the expectation (with

we have resorted to using different fonts for the differenf€SPect toW) of f, (V’W =w). .

quantities. Upper-case letters suchXsare used to denote Based on these definitions we have the following Iemma.

scalar random variables taking value in the relor in Lemma 1:Let V be a complex random vector taking

the complex plan€. Their realizations are typically written V@lue inC™ and having differential entropy(V). Let[|V/|

in lower-caseg.g, z. For random vectors we use bold facedenote its norm an& denote its direction as in (6). Then

capitals,e.g, X_a_nd_ bold Ipwer-case for their realizations, h(V) = h(|[V]) + hx (V\ HV||> + (2m — 1E[log | V]

e.g, x. Deterministic matrices are denoted by upper-case

letters but of a special fong.g, H; and random matrices . ) (13)
are denoted using another special upper-case éogt, H. = (V) +h(IVII| V) + (2m — DE[log | V]
The capacity is denoted by, the energy per symbol hy, (14)

and the signal-to-noise ratio (SNR) is denoteddnr. The
m x m identity matrix is denoted by,,, and0,,,, stands
for am x n matrix with all components being zero.

We will often split a complex vectov € C™ up into its

whenever all the quantities in (13) and (14), respectively,
are defined. Heré(||V||) is the differential entropy of V||
when viewed as a real (scalar) random variable. Moreover,

magnitude]|v| and itsdirection note that
oo v ©) h(IIVI?) = h([VIl) + E[log [[V[] +log2.  (15)
v’ Proof: Omitted. ]

where we reserve this notation exclusively for unit vectors We shall write X ~ Nc(u,K) if X — p is a circularly

i.e. throughout the paper every vector carrying a Kapr ~ Symmetric, zero-mean, complex Gaussian random vector of
covariance matrixE [(X — p)(X — p)f] = K. Similarly,
2For precise definitions we refer to Section II. Nk (p, K) denotes aeal Gaussian random vector. BY ~



U ([a,b]) we denote a random variable that is uniformly Specializing [1, Theorem 4.2], [2, Theorem 6.10] to mem-
distributed on the intervdk, b]. The probability distribution oryless MIMO fading, we have
of a random variableX or random vectoiX is denoted by

Qx or Qx, respectively. S%@ {C(SNR) — loglog SNR} < oo0. (24)
We use “£” to denote “equal in law,” and2£” stands for
“is defined as.” Note that [1, Theorem 4.2], [2, Theorem 6.10] is stated

All rates specified in this paper are in nats per channginder the assumption of an average-power constraint only.
use, andog(-) denotes the natural logarithmic function. ~ However, since a peak-power constraint is more stringent
than an average-power constraint, (24) also holds in the

Il. CHANNEL MODEL AND DEFINITIONS situation of a peak-power constraint.
We consider a channel withr transmit antennas anek The fading numbey is now defined as [1, Definition 4.6],
receive antennas whose outftite C™® is given by [2, Definition 6.13]
Y =Hx + Z. (16) x(H) £ Shl@m {C(SNR) — loglog SNR}. (25)

Herex € C"T denotes the input vector; the random matnxI has b h 3] that the fadi b
H ¢ C™*" s the fading matrix; and the random vector!t "as been shown in [3] that the fading number is given as

Z < C"® represents the additive noise vector HX
We assume that the noise veciiis a white, zero-mean, x(H) = sup {h < ) +nrE [log ||HX||2}
circularly symmetric, complex Gaussian random vedter, Qx ||H |
Z ~ N¢(0,0°l,,) for someo? > 0. o
We further assume that the fading matkixcan be written —log2 — h(HX ’ X) } J (26)
as
H=D+H (17)  independently of the type of power constraint (22) or (23)

that is imposed on the input. Heke denotes a random vector
of unit length andQy denotes its probability law,e., the
supremum is taken over all distributions of the random unit-
vector X. Note that the expectation in the second term is

where all components of ther x nt random matrixt are
IID ~ N¢(0,1) and where the constank x nt line-of-sight
matrix D is scalar in the sense that, fag < nt,

D=d(lny Onx(nr—ng)) (18) understood jointly ovefl andX.
Moreover, it is shown in [3] that this fading number is
or, for ng > nr, achievable by a random vect® = X - R where X is
L, distributed according to the distribution that achieves th
D=d <0(anTT)XnT) g (19) supremum in (26) and wher® is a nonnegative random

. variable independent &X such that
whered € C is a constant.

We assume that the fadirifj and the additive noisg are log R* ~ U ([loglog &,log &]) . (27)
independent and of a joint law that does not depend on the
channel inputx. In the following we will try to evaluate the expression (26)

As for the input, we consider two different constraints: dn the situation of [ID MIMO Gaussian fading with a scalar
peak-power constraint and an average-power constraint. \Wee-of-sight component as defined in (17)—(19).
usef to denote the maximal allowed instantaneous power in
the former case, and to denote the allowed average power iH- PRELIMINARY RESULTS: SOME EXPECTATIONS OF A

the latter case. For both cases we set NONCENTRAL CHI-SQUARE DISTRIBUTION
A € In the derivation of the main result we will need some
SNR= —;. (20) . . :
o2 expectations of a noncentral chi-square random variabée. W

The capacityC(sNR) of the channel (16) is given by ;tate these results in a separate section because th'ey are
interesting by themselves. For space reason we omit the

C(sNR) =sup I(X;Y) (21) proofs. For them and more details we refer to [5], [6], and
Qx [7].

where the supremum is over the set of all probability
distributions onX satisfying the constraints.e., A. Definitions and Results

IX|2 <&, almost surely (22) A nonnega_tive reall rgndqm vqriable is said to have a

noncentral chi-squardistribution withn degrees of freedom
for a peak-power constraint, or and noncentrality parametes? if it is distributed like
E[IX|?] <€ (23)

n
, > (X5 + ), (28)
for an average-power constraint. j=1



where {X;}7_, are IID ~ N (0,1) and the real constants Note thatg,,() is continuous for alf > 0, i.e,, in particular
{/J’J }]71 Sa'tISfy

m—1
=2 (29) %%M APt {63”)
= (m—1)! 1\’
(The distribution of (28) depends on the constafits } - j(m—l—])'] <§> =y(m) (37)

only via the sum of their squares.) The probability density
function of such a distribution is given by [8, Chapter 29] for all m € N. Therefore its first derivative is defined for all
¢ > 0 and can be evaluated to

1 x nTiz s®ta

N T2 > 0. m— x

3 () T L (VE), ez0 @) e & am(©) _ (21T !
Here I, (-) denotes the modified Bessel function of the first " 08 & j=0 :
kind of orderv € R, i.e, (38)

1 v+2k (see [1, Eq. (417)], [2, Eq. (A.39)]). Note tha4, () is also
kl T(v+k+1) ( ) , 220 (31) continuousij.e, in particular
(see [9, Eq. 8.445)). ) ED)mm) (-1
If the number of degrees of freedom is even,i.e, if 51{8 &m — !
n = 2m for some positive integem, then the noncentral = 1
chi-square distribution can also be expressed as a sum of the = — =g (0). (39
m ,

squared norms ofomplexGaussian random variables.

Definition 2: Let the random variabl&” have a noncentral ~ Now we will give closed-form expressions for some ex-
chi-square distribution with an even numken of degrees Pectations of a noncentral chi-square random variable. We
of freedom,i.e. start with the logarithm.

Theorem 4:The expected value of the logarithm of a
noncentral chi-square random variable with an even number

vy ) K
V= Z |UJ + “J| (32) 2m of degrees of freedom is given as
where {U;}7, are D ~ A:(0,1), and {u;}™, are Ellog V] = gm(s”) (40)

complex constants Let further the noncentrahty paramete
s2 be defined as whereV ands? are defined in (32) and (33). Hence, we have

found the solution to the following integral:

A 2
—Zlml @) e o\ 2
logv- () © ¢ L1 25V dv = g(s?)
0 S

(41)

Next we define the foIIowmg continuous functions.

Definition 3: The functionsg,,(-) are defined as follows: for anym € N ands? > 0.

m—1 Proof. A proof can be found in [1, Lemma 10.1], [2,
log(¢) — Ei(=¢) + Z (—1)7 {e_f(j -1 Lemma A.6] [
j=1 Next we look at the reciprocal value.
gm (&) 2 (m —1)! 1\7 Theorem 5:Let n € N with n < m. The expected value
- j(Tn—l—j)':| <§> ) £€>0  of then-th power reciprocal value of a noncentral chi-square
random variable with an even numbem of degrees of
Y(m), ¢=0 freedom is given as
: (34) n—1
for m € N,_ where Ei(-) denotes the exponential integral E[l] _ (1) 'g(n)_ (s2), m>n (42)
function defined as vn (n—1) 7m™"
oo —t
Ei(—€) 2 — / eT dt, £>0 (35) Where 8 (©)
¢ o€ = =g (43)

and(-) is Euler's psi function given b
v() P g y denotes thé-th derivative ofg,,(-) and wherel” ands? are

m-ly defined in (32) and (33). In particular, fon > 1
Z - meN (36)
Jj=1 j 1 / 2
E |:V:| = gm—l(s ) (44)
with v = 0.577 denoting Euler’s constant.




Hence, we have found the solution to the following integral
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[ a5 e e

_1\n—1
((nl—)l)! g (57

(45)

for anym,n € N, m > n, and any reak? > 0.
Note that in the cases where < n the expectation is
unbounded.

Proof: The proof is based on a series expansion o
the modified Bessel function similarly to the proof of [1,
Lemma 10.1], [2, Lemma A.6]. For more details see [H.

gm(§)

-0. b upper bound (50)

gm (-
— — — lower bound (49)
T T T

|
0 1 2 3 4 5 6 7 8 9 10

B. Properties and Bounds gf,,(-) and ¢/,,(*) 3

We will next summarize some properties of the family of L
functionsg,, () andg,,(-) and statg some useful bounds. Fo{legr.nm.a 8. The lowest curve correspondsito= 1 (in this case all bounds
proofs we refer to [5]. We start with a lemma that shows thaoincides withg, (-)), the next three curves correspondrto= 3, and the
these functions are well-behaved. top three tom = 8.

Lemma 6: The functionsg,, (¢) are monotonically strictly
increasing and strictly concave i for all m € N, and
monotonically strictly increasing imn for all £ > 0. The s
functionsg/,, (£) are positive, monotonically strictly decreas-
ing, and strictly convex functions ig for all m € N, and
monotonically strictly decreasing im for all £ > 0.

Next we state some interesting relations betwegst-)

Upper and lower bounds ap, () according to (49) and (50) in

andgj, (-). —
Lemma 7:We have the following relations: N4
S
gm+1(£) = gm(f) + g;n(g) (46)
forall m € N and all¢ > 0, and
1 m ~ upper bound in
g;n-t,-l(f) =z 7g;n(£)> g > Ov (47) o8 e —gﬁi(-g d» ey
§ f /’ — — — lower bound in (51)
A I S T R S S S A
and gm(&) = E - Egmel(g)a g Z 07 (48) 5
for all m € N, Fig. 2. Upper and lower bounds @y, (-) according to (51) in Lemma 8.
Finally, we give some tight bounds. The lowest three curves correspondrio= 1, the next three ton = 3,

Lemma 8: For the functionsg,,(:) we state two sets of 2" e top three ton = 8.

bounds. The first set is tighter:

-1

3

1 .
— Ei(— = L 9:The functiong/, (- be bounded as foll :
gm(§) = log& — Ei(=¢) + ; ot (49) emma 9: The functiong’, (-) can be bounded as follows
gm(§) < log €& — Ei(—¢)
i . Jj+1 1 0 Hﬁgin(f)ﬁmin{ (§ﬁ+1+1)’€+ ! 1}-
m m m m —
+;mm{j(£+j+1)’f+j—1}' 0 (52)

_ o _Note that for{ < m + 1 the first of the two upper bounds
Secondly, we give a set of bounds that is sllghtly less t'Qth tighter than secondi.€., the first argument of thenin-
but that is very appealing because 'the expressions areesimgperator achieves the minimum), while for> m + 1 the
and easy to use for further analysis: second is tighter (the second argument is smaller). Moreove
_ the first upper bound coincides wiyj, (&) for £ = 0, and

log(§ +m — 1) < gm(£) < log(& +m). (1) the second upper bound is asymptotically tight wieands
The bounds (49) and (50) are depicted in Figure 1 and tre infinity.
bounds (51) in Figure 2, both times for the casesnof 1, The bounds (52) are depicted in Figure 3 for the cases of
m =3, andm = 8. m=1, m=3, andm = 8.



second upper bound in (52) (fg>m-1)
- = f\r/sl upper bound in (52) (fo€ <m+1)

g (-
— — ~ lower bound in (52)

m (g)

g

Fig. 3. Upper and lower bounds @, (-) according to (52) in Lemma 9.
The top four curves correspond ta = 1, the middle four tom = 3, and
the lowest group of four curves o = 8.

IV. MAIN RESULT: FADING NUMBER OF AN |ID
GAUSSIAN FADING CHANNEL WITH A SCALAR
LINE-OF-SIGHT COMPONENT

To state our main result we need to make a case distinc-

tion. We start with the situationg < nt which turns out to
be easier to solve.

Theorem 10:Assumeng < nt and a Gaussian fading

matrix as given in (17) and (18). Then

X(H) = nrgng (|d*) — nr — log T'(ng) (53)

Here, (58) follows from the fact thd/=+H)||? is noncentral
chi-square distributed and from (40). The inequality (59)
follows from the monotonicity ofg,,(-) and the fact that
IE]? < 1. It is tight if |E]* = 1, i.e, E = 0. The
inequality (60) follows from (10) and (11) and is tight if
= is uniformly distributed on the unit sphere @I'r so that
HX is isotropically distributed. The result now follows from
(26). [ ]
The casengr > nt is more difficult since then (60) is in
general not tight. We firstly need to introduce some notation

Note that
HX — DX + fIX £ (dg) VH (61)

whereH ~ AN¢(0,1,,,). Let us split the vectoH into two

parts: ~
- H,
H= (m)

where H; ~ N¢(0,1,,) and Hy ~ N¢(0,l,,_,,) are
two independent white Gaussian random vector€'th and
Cmr—"7 respectively. Then we can write

(62)

HX Z (de Hl) . (63)
2
Next we define
Sy & [|dX + Hy [, (64)
Sy 2 ||H,|*. (65)

Note thatsS; is noncentral chi-square distributed witht
degrees of freedom and noncentrality param¢teX||* =
|d|? independently of the distribution dX, and thatS, is

where ¢,,(-) is defined in (34). The fading number iscentral chi-square distributed with(ng — nr) degrees of

= R-X* with R1 X*, where
is specified in (27) and where

achievable by an inpuX
the distribution of R € R™

(%)

with E* € C"® being anisotropically distributedunit vector.
Proof: We write for the unit vectoX of the maximiza-

tion in (26)

whereZ e C"r and=’ € C""~ "=, Note that from||X||? = 1
it follows that||Z[|?> < 1. Then

(54)

(55)

HX =DX +HX £2Jd=E+ H (56)
whereH ~ N¢(0, ,,,). Hence,
h(HX ‘ X) = h(I:I) = nrlog we; (57)
nRE [log [HX ] = nrgas (|4FZI)  (58)
< nRgne (dI%): (59)
HX 27"R
hx (HHXH) <log m. (60)

freedom. MoreoverS; andS; are independent of each other.
Theorem 11:Assumeng > nt and a Gaussian fading
matrix as given in (17) and (19). Then

X(H) = n1gn, (|d]*) — nt —log D(nt) + I (Su gj)
(66)
where g,,,(-) is defined in (34). The fading number is
achievable by an inpuK = R - X* with Rl X*, where
the distribution of R € R™ is specified in (27) and where
X* is anisotropically distributedunit vector.
Proof: A proof is given in the Appendix. [ ]
Unfortunately, we have not succeeded in deriving the term
1(S1;52/5;) precisely. Instead, we will state an upper and
a lower bound that both do not dependd@rThis shows that
1(51;52/51) is bounded ind.
Claim 12: For ng > nt let S; and S2 be independent
random variables defined in (64) and (65), respectivelynThe
fornt > 1

01T (Sl; gi) < (nr — nt — 1)1p(ng — nt)

F(’I’LR - n-r)

—(ng—n1 — 1) — log +log —T— (67)
TLT—l

nNrR — Nt



and fornt =1 APPENDIX

o<1l(s 52 < 9 ] 9 We will give here a derivation of Theorem 11. We start
= Ve )= (nr = 2)¢(nr — 1) = (nr — 2) with the derivation of an optimal input distribution. From
I(ng—1) T (26) we know that the optimal input is given &= R - X
Tam—1 + log 5 +1. (68) and (27) specifies an optimal choice/®f It remains to prove
) . that an isotropic unit vectoK is optimal. To that goal let
Proof: The proof relies strongly on the results from . L ; 4
. X L V be an arbitrary (deterministic) unitaryr x nt matrix and
Section Ill about the noncentral chi-square distributiBar ' . .
. . define theng x ng matrix U as follows:
space reasons we omit the details.

Hence, combining Theorem 10, Theorem 11, and Claim 12 TS ( \Y OnTX(nR—nT)> ) (75)
we get the following corollary.

_Corollary 13: The fading number of the 11D MIMO Gaus- |t js not hard to show thal is unitary and that for any choice
sian fading channel as defined in (16)—(19) is given by  f v we haveUHX £ HVX.
) Let's now makeV random,i.e., we define ant x nt
X(H) = nmgn,, (|d*) = 7m — log T'(nm) + f(nr, n7sd) unitary matrixV that is Haar distributetdland independent
of (H,X,Z). Further we define a random unitang x ng

— log

O(HR—nT)an lannT

Where (69) matrix U analogously to (75):
Nm = min{nR,nT} (70) U VY (0 \Y% On-|-|><(anT)> ) (76)
denotes the degree of freedom of a MIMO fading channel (nr—nr)xnt RN
and wheref (ng, nt; d) depends primarily omt andng and  Then we get:
is bounded ind: I(X;HX + Z)
0 < f(nr,n1;d) < (nr — n1 — D)(ng — n1) = I(X;HX +7Z ‘ U) 77)
~ (ng — 7 — 1) — log LR=T) — [(VX;UHX + UZ | U) (78)
R =M1 = I(VX;HVX + Z | U) (79)
. nr e 9 9
+ log (mln{nT1’2}> . (7D :I(X;HX+Z|IU) (80)
Using (51) we therefore have fog| > 1 - h(H{( +2|U) - h(H{( +2| {(’U) (81)
=h(HX+Z|U)-h(HX+Z|X 82
X ~ nmlog (|d|* 4+ nm). (72) ( ) ) E u| ) (82)
< h(HX + Z) — h(HX + Z| X) (83)
V. CONCLUSIONS = I(X;HX + Z). (84)

We have evaluated the expression of the fading numbefe o - ihe first equality follows sinc® is independent of

qu a Te.mr? ryless 11D Gauss?n fadlrr:g Chi]nnil Wl'th scalghe other random guantities; the subsequent equalityvisllo
ine-of-sight component. We have shown that for largé because givefi alsoV is known and because mutual infor-

. . 5 4
the fadl_ng numbzer grows likemgn, (|d[*) wheregy, (|d|*) mation is not changed when the arguments are multiplied by
grows likelog |d|* and wherenm, denoteddegree of freedom known invertible quantities; in the subsequent equality we

of a MIMO fading channelis the smaller of the number of use thatUHX Z HVX as shown above and th&lz 2 Z:

antennas at transmitter and receiver, respectively. in (80) we introduceX 2 VX; the subsequent equality
Mo.reover,' we haye _shown that the optimal input is baSlf'ollows from the definition of mutual information; then we
cally isotropically distributed.e., for ng < nr use the fact thatIX + Z|X is independent obJ or V; and
<t — =" the inequality follows from conditioning that cannot inase
= (73)
0 entropy. 5
with E* € C™® being anisotropically distributedunit vector, Nof[e t.hat.X is isotropically d|§tr|but¢d '|ndepe.ndentl'y of
and forng > ny the distribution ofX. Hence, an isotropic input will achieve
X — = (74) at least the same mutual information as any other input.
Next, we will derive the expression (66). To that goal we
with E* € C" being anisotropically distributedunit vector.  start with Lemma 1 and plug (15) into (13):
Furthermore, we have derived closed-form expressions for . 9
some important expectations in the fields of information ha(V V) = h(V) = h([[V]*) +log 2
theory and communications. In particular, we have computed — (m —1E[log | V]J]. (85)

Ellog V] and E[yx] for a noncentral chi-square randomWe then choos®& = HX and plug this expression into (26).

variable V' with an even number of degrees of freedom ;
. . Note that we can drop the supremum since we have proven
Moreover, we have shown that the resulting functions behave

nicely and we have found tight upper and lower bounds t0 3a random matrixT is Haar distributed if for any deterministic unitary
them. matrix M we have thaMT Z T.

[



above that the supremum is achieved by an isotropically For the second term in (89) we note that it is independent

distributedX. We get the following:

of the lastng — nt rows of H:

N 5 5 dX -
. HX I(X;HX) = I(X ( >+H> (96)
I<|HX;HX>+h ( = ‘n ||) “\o)
” ” H ” — I(X;dX + Hl); (97)
+ nRE [k’g ||HX||2} —log2 — h(HX | X) (86)  and for the last term we get
. . S
=7 (|HX; HE§H> + h(HX) (||HXH2) Ellog(S1 + S2)] = E[log S1] + E [1og (1 + Sj)] . (98)
Putting this together we yield
+ E[loguHXH } h(HX | X) (87) T S
HX ) x =I(X;dX +H;) + Ellog S1] — <51 52 ) (99)
X% +1(X; HX) — h([HX]?) e - '
[ HX| :I(X;dX+H1) + E[log S1] — h(S1)
+E [log [HX| ] (88) <sl, 52> . (100)
. S1
=I(s +52;£ +I(X;HX) — () + S2) Now note that thg same derivation can be done for the
S1+ S situationng = nt in which caseS; = 0. We get exactly

the same result (100) apart from the last teIréSl; 2
which is in this situation equal to zero. However, we

Znow

Here, the first equality follows from (26); in the subsequenfrom Theorem 10 the exact value of the fading number for

equality we use (85); the next step follows from the definitio ,,,
of mutual information and the fact that squaring a nonneg-

ative argument of mutual information does not change its I(X;dX + Hi) + E[log S1] —

value; and in the final equality we apply our definitions (64)
and (65).
The first term in (89) can be simplified as follows:

HX
IS+ Sy ———
<1 2 S1+SQ>
dX + H; H,
=185+ 95y 90
( ! 2 VS + 8y \/S1+S2> (%0)
+~1 I:IQ Sa
=I5 +S;7, , = 91
(1 S ¢s*zsl> O
dX+H;, H, S, [1]
=h(S1+8)—h[S1+ 5| —, —, — 92
L( 1 2) <1 2 m \/g Sl>( )
Sy (2]
Zh(51+52)—h(51+52 S) (93)
1
= h(S; +52) — S1 1+& é (94) [
S1 S

= h(S1+S5) — h (sl [4]

gj) —E[log( + ?ﬂ . (95)

Here the first equality follows from splitting the vectorant [5]
two subvectors, one witlkt and one withng — nt com-
ponents (see (61)); in the subsequent equality we perforg)
some one-to-one transformations that do not change the
value of the mutual information. In (93) we note th¥itis [7]
isotropically distributed and that therefore bofX + H,

and H, are isotropic. Hence, the magnitudés and S,

are independent of the dwecnorfé"fgi and 22 And [
finally, the last equality follows from '‘the scahng property|9]
of differential entropy of aeal argument.

= n1, and hence we see that

h(S1)

= n1gn; (|d]*) — nr —logT(ny). (101)

Plugging this into (100) then yields

S
X = n1gn; (|d]*) = nt —logT(nt) + I (Sl; S’j) (102)

which proves the claim.
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