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Abstract— The capacity of regular noncoherent fading chan-
nels grows like log log SNR + χ at high signal-to-noise ratios
(SNR). Here,χ, denotedfading number, is a constant indepen-
dent of the SNR, but dependent on the distribution of the fading
process. Recently, an expression of the fading number has been
derived for the situation of general memoryless multiple-input
multiple-output (MIMO) fading channels. In this paper, this
expression is evaluated in the special situation of an independent
and identically distributed MIMO Gaussian fading channel
with a scalar line-of-sight componentd. It is shown that, for
large |d|, the fading number grows like min{nR, nT} log |d|2

where nR and nT denote the number of antennas at the receiver
and transmitter, respectively.

As a side-product along the way, closed-form expressions
are derived for the expectation of the logarithm and for
the expectation of then-th power of the reciprocal value of
a noncentral chi-square random variable. It is shown that
these expectations can be expressed by a family of continuous
functions gm(·) and that these families have nice properties
(monotonicity, concavity, etc.). Moreover, some tight upper and
lower bounds are derived that are helpful in situations where
the closed-form expression ofgm(·) is too complex for further
analysis.

I. I NTRODUCTION

In this paper we study noncoherent communication over
a flat fading channel. The termnoncoherentrefers to the
situation where neither transmitter nor receiver havea priori
knowledge of the fading realization (or channel state). It is
assumed that only the probability law of the fading process is
known. We further assume that the process isregular which
means that the differential entropy rate of the process is finite.
In an engineering explanation this means that the process is
“random enough” such that even with complete knowledge
of the past fading realizations, the actual fading value cannot
be predicted error-free, but there will be always (a possibly
very small) nonzero prediction error.

It has been known for some time that the capacity of such
noncoherent fading channels typically grows only double-
logarithmically in the signal-to-noise ratio (SNR) at high
SNR [1], [2]. Such a growth rate is extremely power-
inefficient: increasing capacity by only one bit requires the
SNR to besquaredor, on a dB-scale, to be doubled! Hence,
every communication system should be designed such that
it does not operate in this regime.

To quantify the rates at which this poor power efficiency
begins, [1], [2] introduce thefading numberχ as the second
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term in the high-SNR asymptotic expansion of channel
capacity. In detail this means that the capacity can be written
as

C(SNR) = log(1 + log(1 + SNR)) + χ+ o(1) (1)

whereo(1) tends to zero as the SNR tends to infinity. Note
that the fading numberχ is a constant,i.e., it does not
depend on the SNR, however, it does strongly depend on
the particular probability distribution of the fading process.
In particular,χ depends on channel parameters like line-of-
sight component, number of antennas, etc.

Even though the fading number is defined for the (unre-
alistic) case of the SNR tending to infinity, it is relevant for
practical purposes: it is an accurate indicator of the threshold
SNR0 between the power-efficient low-SNR regime where
capacity grows logarithmically in the SNR and the highly
inefficient high-SNR regime with double-logarithmic growth.
To see this connection betweenχ and SNR0 first note that
a communication system is operating in the inefficient high-
SNR region if and only if the approximation

C(SNR) ≈ log(1 + log(1 + SNR)) + χ (2)

is a good approximation (i.e., the o(1) terms in (1) have
become negligible). In (2)χ is usually much larger than
log log SNR unless the SNR is at extremely high values
(larger thaneeχ

!). Hence, for SNR values in the range of
the thresholdSNR0, the fading numberχ will dominate the
log log-term so that the capacity around the threshold can be
approximated by

C(SNR0) ≈ χ. (3)

In other words, ifC(SNR) is significantly larger thanχ, the
SNR must be larger thanSNR0, i.e., the system is in the
power-inefficientlog log-regime.

Recently, the fading number has been derived for gen-
eral multiple-input multiple-output (MIMO) fading channels
without temporal memory [3]. Here we use the term “gen-
eral” to describe the fact that no specific distribution has been
assumed for the fading process.1 The given expression in [3]
is therefore very general. On the other hand, the expression
is rather difficult to evaluate and is therefore partially hiding
some insight. In this paper we would like to evaluate this
memoryless MIMO fading number in the special situation
of an independent and identically distributed (IID) Gaussian

1The fading process is only assumed to be stationary, ergodic,regular,
and of finite energy.



fading channel with a scalar line-of-sight component.2 We
will show that for a large line-of-sight componentd the
fading number basically grows like

χ = nm log |d|2 (4)

where
nm = min{nR, nT} (5)

is the degree of freedom of a MIMO fading channel as
defined,e.g., in [4]. HerenR andnT denote the number of
antennas at the receiver and transmitter, respectively.

As an interesting side-product we will derive so far
unknown closed-form expressions of some expectations of a
noncentral chi-square random variable: we will give closed-
form solutions toE[log V ] andE

[

1
V n

]

for a noncentral chi-
square random variableV with an even number of degrees
of freedom. Note that in practice we often have an even
number of degrees of freedom because we usually consider
complexGaussian random variables consisting oftwo real
Gaussian components. We will see that these expectations
are all related to a family of functionsgm(·) that is defined
in Definition 3 in Section III-A. We will also derive some
useful bounds on these functions.

The remainder of this paper is structured as follows.
After some remarks about notation we will define the
channel model and specify all assumptions in Section II.
In Section III we give the preliminary results about some
expectations of a noncentral chi-square random variable that
are interesting by themselves. The main results concerning
the MIMO Gaussian fading number are then summarized in
Section IV. We conclude in Section V.

We try to use upper-case letters for random quantities and
lower-case letters for their realizations. This rule, however,
is broken when dealing with matrices and some constants.
To better differentiate between scalars, vectors, and matrices
we have resorted to using different fonts for the different
quantities. Upper-case letters such asX are used to denote
scalar random variables taking value in the realsR or in
the complex planeC. Their realizations are typically written
in lower-case,e.g., x. For random vectors we use bold face
capitals,e.g., X and bold lower-case for their realizations,
e.g., x. Deterministic matrices are denoted by upper-case
letters but of a special font,e.g., H; and random matrices
are denoted using another special upper-case font,e.g., H.
The capacity is denoted byC, the energy per symbol byE ,
and the signal-to-noise ratio (SNR) is denoted bySNR. The
m ×m identity matrix is denoted byIm, and0m×n stands
for a m× n matrix with all components being zero.

We will often split a complex vectorv ∈ C
m up into its

magnitude‖v‖ and itsdirection

v̂ ,
v

‖v‖ , (6)

where we reserve this notation exclusively for unit vectors,
i.e., throughout the paper every vector carrying a hat,v̂ or

2For precise definitions we refer to Section II.

V̂, denotes a (deterministic or random, respectively) vector
of unit length

‖v̂‖ = ‖V̂‖ = 1. (7)

To be able to work with suchdirection vectorswe shall need
a differential entropy-like quantity for random vectors that
take value on the unit sphere inCm: let λ denote the area
measure on the unit sphere inCm. If a random vectorV̂
takes value in the unit sphere and has the densitypλ

V̂
(v̂)

with respect toλ, then we shall let

hλ(V̂) , −E
[

log pλ
V̂

(V̂)
]

(8)

if the expectation is defined.
We note that just as ordinary differential entropy is invari-

ant under translation, so ishλ(V̂) invariant under rotation.
That is, if U is a deterministic unitary matrix, then

hλ(UV̂) = hλ(V̂). (9)

Also note thathλ(V̂) is maximized if V̂ is uniformly
distributed on the unit sphere, in which case

hλ(V̂) = log cm (10)

wherecm denotes the surface area of the unit sphere inC
m

cm =
2πm

Γ(m)
. (11)

The definition (8) can be easily extended to conditional
entropies: ifW is some random vector, and if conditional
on W = w the random vector̂V has densitypλ

V̂|W(v̂|w)

then we can define

hλ

(

V̂
∣

∣W = w
)

, −E
[

log pλ
V̂|W(V̂|W)

∣

∣

∣
W = w

]

(12)

and we can definehλ

(

V̂
∣

∣W
)

as the expectation (with
respect toW) of hλ

(

V̂
∣

∣W = w
)

.
Based on these definitions we have the following lemma.
Lemma 1:Let V be a complex random vector taking

value inC
m and having differential entropyh(V). Let ‖V‖

denote its norm and̂V denote its direction as in (6). Then

h(V) = h(‖V‖) + hλ

(

V̂
∣

∣ ‖V‖
)

+ (2m− 1)E[log ‖V‖]
(13)

= hλ

(

V̂
)

+ h
(

‖V‖
∣

∣ V̂
)

+ (2m− 1)E[log ‖V‖]
(14)

whenever all the quantities in (13) and (14), respectively,
are defined. Hereh(‖V‖) is the differential entropy of‖V‖
when viewed as a real (scalar) random variable. Moreover,
note that

h
(

‖V‖2
)

= h
(

‖V‖
)

+ E[log ‖V‖] + log 2. (15)

Proof: Omitted.
We shall writeX ∼ NC(µ,K) if X − µ is a circularly

symmetric, zero-mean, complex Gaussian random vector of
covariance matrixE

[

(X − µ)(X − µ)†
]

= K. Similarly,
NR (µ,K) denotes areal Gaussian random vector. ByX ∼



U ([a, b]) we denote a random variable that is uniformly
distributed on the interval[a, b]. The probability distribution
of a random variableX or random vectorX is denoted by
QX or QX, respectively.

We use “
L

=” to denote “equal in law,” and “,” stands for
“is defined as.”

All rates specified in this paper are in nats per channel
use, andlog(·) denotes the natural logarithmic function.

II. CHANNEL MODEL AND DEFINITIONS

We consider a channel withnT transmit antennas andnR

receive antennas whose outputY ∈ C
nR is given by

Y = Hx + Z. (16)

Herex ∈ C
nT denotes the input vector; the random matrix

H ∈ C
nR×nT is the fading matrix; and the random vector

Z ∈ C
nR represents the additive noise vector.

We assume that the noise vectorZ is a white, zero-mean,
circularly symmetric, complex Gaussian random vector,i.e.,
Z ∼ NC

(

0, σ2
InR

)

for someσ2 > 0.
We further assume that the fading matrixH can be written

as
H = D + H̃ (17)

where all components of thenR × nT random matrixH̃ are
IID ∼ NC(0, 1) and where the constantnR×nT line-of-sight
matrix D is scalar in the sense that, fornR ≤ nT,

D = d
(

InR 0nR×(nT−nR)

)

(18)

or, for nR > nT,

D = d

(

InT

0(nR−nT)×nT

)

, (19)

whered ∈ C is a constant.
We assume that the fadingH and the additive noiseZ are

independent and of a joint law that does not depend on the
channel inputx.

As for the input, we consider two different constraints: a
peak-power constraint and an average-power constraint. We
useE to denote the maximal allowed instantaneous power in
the former case, and to denote the allowed average power in
the latter case. For both cases we set

SNR ,
E
σ2
. (20)

The capacityC(SNR) of the channel (16) is given by

C(SNR) = sup
QX

I(X;Y) (21)

where the supremum is over the set of all probability
distributions onX satisfying the constraints,i.e.,

‖X‖2 ≤ E , almost surely (22)

for a peak-power constraint, or

E
[

‖X‖2
]

≤ E (23)

for an average-power constraint.

Specializing [1, Theorem 4.2], [2, Theorem 6.10] to mem-
oryless MIMO fading, we have

lim
SNR↑∞

{

C(SNR) − log log SNR
}

<∞. (24)

Note that [1, Theorem 4.2], [2, Theorem 6.10] is stated
under the assumption of an average-power constraint only.
However, since a peak-power constraint is more stringent
than an average-power constraint, (24) also holds in the
situation of a peak-power constraint.

The fading numberχ is now defined as [1, Definition 4.6],
[2, Definition 6.13]

χ(H) , lim
SNR↑∞

{

C(SNR) − log log SNR
}

. (25)

It has been shown in [3] that the fading number is given as

χ(H) = sup
Q

X̂

{

hλ

(

HX̂

‖HX̂‖

)

+ nRE
[

log ‖HX̂‖2
]

− log 2 − h
(

HX̂
∣

∣ X̂
)

}

, (26)

independently of the type of power constraint (22) or (23)
that is imposed on the input. HerêX denotes a random vector
of unit length andQ

X̂
denotes its probability law,i.e., the

supremum is taken over all distributions of the random unit-
vector X̂. Note that the expectation in the second term is
understood jointly overH andX̂.

Moreover, it is shown in [3] that this fading number is
achievable by a random vectorX = X̂ · R where X̂ is
distributed according to the distribution that achieves the
supremum in (26) and whereR is a nonnegative random
variable independent of̂X such that

logR2 ∼ U ([log log E , log E ]) . (27)

In the following we will try to evaluate the expression (26)
in the situation of IID MIMO Gaussian fading with a scalar
line-of-sight component as defined in (17)–(19).

III. PRELIMINARY RESULTS: SOME EXPECTATIONS OF A

NONCENTRAL CHI-SQUARE DISTRIBUTION

In the derivation of the main result we will need some
expectations of a noncentral chi-square random variable. We
state these results in a separate section because they are
interesting by themselves. For space reason we omit the
proofs. For them and more details we refer to [5], [6], and
[7].

A. Definitions and Results

A nonnegative real random variable is said to have a
noncentral chi-squaredistribution withn degrees of freedom
andnoncentrality parameters2 if it is distributed like

n
∑

j=1

(Xj + µj)
2, (28)



where{Xj}n
j=1 are IID ∼ NR (0, 1) and the real constants

{µj}n
j=1 satisfy

s2 =

n
∑

j=1

µ2
j . (29)

(The distribution of (28) depends on the constants{µj}
only via the sum of their squares.) The probability density
function of such a distribution is given by [8, Chapter 29]

1

2

( x

s2

)
n−2

4

e−
s2+x

2 In/2−1

(

s
√
x
)

, x ≥ 0. (30)

Here Iν(·) denotes the modified Bessel function of the first
kind of orderν ∈ R, i.e.,

Iν(x) ,

∞
∑

k=0

1

k! Γ(ν + k + 1)

(x

2

)ν+2k

, x ≥ 0 (31)

(see [9, Eq. 8.445]).
If the number of degrees of freedomn is even, i.e., if

n = 2m for some positive integerm, then the noncentral
chi-square distribution can also be expressed as a sum of the
squared norms ofcomplexGaussian random variables.

Definition 2: Let the random variableV have a noncentral
chi-square distribution with an even number2m of degrees
of freedom,i.e.,

V ,

m
∑

j=1

∣

∣Uj + µj

∣

∣

2
(32)

where {Uj}m
j=1 are IID ∼ NC(0, 1), and {µj}m

j=1 are
complex constants. Let further the noncentrality parameter
s2 be defined as

s2 ,

m
∑

j=1

|µj |2. (33)

Next we define the following continuous functions.
Definition 3: The functionsgm(·) are defined as follows:

gm(ξ) ,







































log(ξ) − Ei(−ξ) +
m−1
∑

j=1

(−1)j

[

e−ξ(j − 1)!

− (m− 1)!

j(m− 1 − j)!

](

1

ξ

)j

, ξ > 0

ψ(m), ξ = 0
(34)

for m ∈ N, where Ei(·) denotes the exponential integral
function defined as

Ei(−ξ) , −
∫ ∞

ξ

e−t

t
dt, ξ > 0 (35)

andψ(·) is Euler’s psi function given by

ψ(m) , −γ +
m−1
∑

j=1

1

j
, m ∈ N (36)

with γ ≈ 0.577 denoting Euler’s constant.

Note thatgm(ξ) is continuous for allξ ≥ 0, i.e., in particular

lim
ξ↓0

{

log(ξ) − Ei(−ξ) +
m−1
∑

j=1

(−1)j

[

e−ξ(j − 1)!

− (m− 1)!

j(m− 1 − j)!

](

1

ξ

)j
}

= ψ(m) (37)

for all m ∈ N. Therefore its first derivative is defined for all
ξ ≥ 0 and can be evaluated to

g′m(ξ) ,
∂gm(ξ)

∂ξ
=

(−1)mΓ(m)

ξm



e−ξ −
m−1
∑

j=0

(−1)j

j!
ξj





(38)

(see [1, Eq. (417)], [2, Eq. (A.39)]). Note thatg′m(·) is also
continuous,i.e., in particular

lim
ξ↓0







(−1)mΓ(m)

ξm



e−ξ −
m−1
∑

j=0

(−1)j

j!
ξj











=
1

m
= g′m(0). (39)

Now we will give closed-form expressions for some ex-
pectations of a noncentral chi-square random variable. We
start with the logarithm.

Theorem 4:The expected value of the logarithm of a
noncentral chi-square random variable with an even number
2m of degrees of freedom is given as

E[log V ] = gm(s2) (40)

whereV ands2 are defined in (32) and (33). Hence, we have
found the solution to the following integral:
∫ ∞

0

log v ·
( v

s2

)
m−1

2

e−v−s2

Im−1(2s
√
v) dv = gm(s2)

(41)
for anym ∈ N ands2 ≥ 0.

Proof: A proof can be found in [1, Lemma 10.1], [2,
Lemma A.6]

Next we look at the reciprocal value.
Theorem 5:Let n ∈ N with n < m. The expected value

of then-th power reciprocal value of a noncentral chi-square
random variable with an even number2m of degrees of
freedom is given as

E
[

1

V n

]

=
(−1)n−1

(n− 1)!
· g(n)

m−n(s2), m > n (42)

where

g(ℓ)
m (ξ) =

∂ℓgm(ξ)

∂ξℓ
(43)

denotes theℓ-th derivative ofgm(·) and whereV ands2 are
defined in (32) and (33). In particular, form > 1

E
[

1

V

]

= g′m−1(s
2). (44)



Hence, we have found the solution to the following integral:

∫ ∞

0

1

vn
·
( v

s2

)
m−1

2

e−v−s2

Im−1(2s
√
v) dv

=
(−1)n−1

(n− 1)!
· g(n)

m−n(s2) (45)

for anym,n ∈ N, m > n, and any reals2 ≥ 0.
Note that in the cases wherem ≤ n the expectation is
unbounded.

Proof: The proof is based on a series expansion of
the modified Bessel function similarly to the proof of [1,
Lemma 10.1], [2, Lemma A.6]. For more details see [5].

B. Properties and Bounds ofgm(·) and g′m(·)
We will next summarize some properties of the family of

functionsgm(·) andg′m(·) and state some useful bounds. For
proofs we refer to [5]. We start with a lemma that shows that
these functions are well-behaved.

Lemma 6:The functionsgm(ξ) are monotonically strictly
increasing and strictly concave inξ for all m ∈ N, and
monotonically strictly increasing inm for all ξ ≥ 0. The
functionsg′m(ξ) are positive, monotonically strictly decreas-
ing, and strictly convex functions inξ for all m ∈ N, and
monotonically strictly decreasing inm for all ξ ≥ 0.

Next we state some interesting relations betweengm(·)
andg′m(·).

Lemma 7:We have the following relations:

gm+1(ξ) = gm(ξ) + g′m(ξ) (46)

for all m ∈ N and allξ ≥ 0, and

g′m+1(ξ) =
1

ξ
− m

ξ
g′m(ξ), ξ > 0, (47)

and g′m(ξ) =
1

m
− ξ

m
g′m+1(ξ), ξ ≥ 0, (48)

for all m ∈ N.
Finally, we give some tight bounds.
Lemma 8:For the functionsgm(·) we state two sets of

bounds. The first set is tighter:

gm(ξ) ≥ log ξ − Ei(−ξ) +

m−1
∑

j=1

1

ξ + j
, (49)

gm(ξ) ≤ log ξ − Ei(−ξ)

+
m−1
∑

j=1

min

{

j + 1

j(ξ + j + 1)
,

1

ξ + j − 1

}

. (50)

Secondly, we give a set of bounds that is slightly less tight,
but that is very appealing because the expressions are simple
and easy to use for further analysis:

log(ξ +m− 1) ≤ gm(ξ) ≤ log(ξ +m). (51)

The bounds (49) and (50) are depicted in Figure 1 and the
bounds (51) in Figure 2, both times for the cases ofm = 1,
m = 3, andm = 8.
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Fig. 1. Upper and lower bounds ongm(·) according to (49) and (50) in
Lemma 8. The lowest curve corresponds tom = 1 (in this case all bounds
coincides withg1(·)), the next three curves correspond tom = 3, and the
top three tom = 8.
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Fig. 2. Upper and lower bounds ongm(·) according to (51) in Lemma 8.
The lowest three curves correspond tom = 1, the next three tom = 3,
and the top three tom = 8.

Lemma 9:The functiong′m(·) can be bounded as follows:

1

ξ +m
≤ g′m(ξ) ≤ min

{

m+ 1

m(ξ +m+ 1)
,

1

ξ +m− 1

}

.

(52)
Note that forξ < m + 1 the first of the two upper bounds
is tighter than second (i.e., the first argument of themin-
operator achieves the minimum), while forξ > m + 1 the
second is tighter (the second argument is smaller). Moreover,
the first upper bound coincides withg′m(ξ) for ξ = 0, and
the second upper bound is asymptotically tight whenξ tends
to infinity.

The bounds (52) are depicted in Figure 3 for the cases of
m = 1, m = 3, andm = 8.
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Fig. 3. Upper and lower bounds ong′
m

(·) according to (52) in Lemma 9.
The top four curves correspond tom = 1, the middle four tom = 3, and
the lowest group of four curves tom = 8.

IV. M AIN RESULT: FADING NUMBER OF AN IID
GAUSSIAN FADING CHANNEL WITH A SCALAR

L INE-OF-SIGHT COMPONENT

To state our main result we need to make a case distinc-
tion. We start with the situationnR ≤ nT which turns out to
be easier to solve.

Theorem 10:AssumenR ≤ nT and a Gaussian fading
matrix as given in (17) and (18). Then

χ(H) = nRgnR

(

|d|2
)

− nR − log Γ(nR) (53)

where gm(·) is defined in (34). The fading number is
achievable by an inputX = R · X̂∗ with R ⊥⊥ X̂

∗, where
the distribution ofR ∈ R

+ is specified in (27) and where

X̂
∗ =

(

Ξ
∗

0

)

(54)

with Ξ
∗ ∈ C

nR being anisotropically distributedunit vector.
Proof: We write for the unit vector̂X of the maximiza-

tion in (26)

X̂ =

(

Ξ

Ξ
′

)

(55)

whereΞ ∈ C
nR andΞ

′ ∈ C
nT−nR. Note that from‖X̂‖2 = 1

it follows that ‖Ξ‖2 ≤ 1. Then

HX̂ = DX̂ + H̃X̂
L

= dΞ + H̃ (56)

whereH̃ ∼ NC(0, InR). Hence,

h
(

HX̂
∣

∣ X̂
)

= h
(

H̃
)

= nR log πe; (57)

nRE
[

log ‖HX̂‖2
]

= nRgnR

(

|d|2‖Ξ‖2
)

(58)

≤ nRgnR

(

|d|2
)

; (59)

hλ

(

HX̂

‖HX̂‖

)

≤ log
2πnR

Γ(nR)
. (60)

Here, (58) follows from the fact that‖dΞ+H̃‖2 is noncentral
chi-square distributed and from (40). The inequality (59)
follows from the monotonicity ofgm(·) and the fact that
‖Ξ‖2 ≤ 1. It is tight if ‖Ξ‖2 = 1, i.e., Ξ

′ = 0. The
inequality (60) follows from (10) and (11) and is tight if
Ξ is uniformly distributed on the unit sphere inCnR so that
HX̂ is isotropically distributed. The result now follows from
(26).

The casenR > nT is more difficult since then (60) is in
general not tight. We firstly need to introduce some notation.
Note that

HX̂ = DX̂ + H̃X̂
L

=

(

dX̂
0

)

+ H̃ (61)

whereH̃ ∼ NC(0, InR). Let us split the vector̃H into two
parts:

H̃ =

(

H̃1

H̃2

)

(62)

where H̃1 ∼ NC(0, InT) and H̃2 ∼ NC(0, InR−nT) are
two independent white Gaussian random vectors inC

nT and
C

nR−nT , respectively. Then we can write

HX̂
L

=

(

dX̂ + H̃1

H̃2

)

. (63)

Next we define

S1 ,
∥

∥dX̂ + H̃1

∥

∥

2
, (64)

S2 ,
∥

∥H̃2

∥

∥

2
. (65)

Note thatS1 is noncentral chi-square distributed with2nT

degrees of freedom and noncentrality parameter‖dX̂‖2 =
|d|2 independently of the distribution of̂X, and thatS2 is
central chi-square distributed with2(nR − nT) degrees of
freedom. Moreover,S1 andS2 are independent of each other.

Theorem 11:AssumenR > nT and a Gaussian fading
matrix as given in (17) and (19). Then

χ(H) = nTgnT

(

|d|2
)

− nT − log Γ(nT) + I

(

S1;
S2

S1

)

(66)
where gm(·) is defined in (34). The fading number is
achievable by an inputX = R · X̂∗ with R ⊥⊥ X̂

∗, where
the distribution ofR ∈ R

+ is specified in (27) and where
X̂

∗ is an isotropically distributedunit vector.
Proof: A proof is given in the Appendix.

Unfortunately, we have not succeeded in deriving the term
I(S1;S2/S1) precisely. Instead, we will state an upper and
a lower bound that both do not depend ond. This shows that
I(S1;S2/S1) is bounded ind.

Claim 12: For nR > nT let S1 and S2 be independent
random variables defined in (64) and (65), respectively. Then
for nT > 1

0 ≤ I

(

S1;
S2

S1

)

≤ (nR − nT − 1)ψ(nR − nT)

−(nR − nT − 1) − log
Γ(nR − nT)

nR − nT
+ log

nT

nT − 1
, (67)



and fornT = 1

0 ≤ I

(

S1;
S2

S1

)

≤ (nR − 2)ψ(nR − 1) − (nR − 2)

− log
Γ(nR − 1)

nR − 1
+ log

π

2
+ 1. (68)

Proof: The proof relies strongly on the results from
Section III about the noncentral chi-square distribution.For
space reasons we omit the details.

Hence, combining Theorem 10, Theorem 11, and Claim 12
we get the following corollary.

Corollary 13: The fading number of the IID MIMO Gaus-
sian fading channel as defined in (16)–(19) is given by

χ(H) = nmgnm

(

|d|2
)

− nm − log Γ
(

nm
)

+ f(nR, nT; d)

(69)
where

nm = min{nR, nT} (70)

denotes the degree of freedom of a MIMO fading channel
and wheref(nR, nT; d) depends primarily onnT andnR and
is bounded ind:

0 ≤ f(nR, nT; d) ≤ (nR − nT − 1)ψ(nR − nT)

− (nR − nT − 1) − log
Γ(nR − nT)

nR − nT

+ log

(

min

{

nT

nT − 1
,
πe

2

})

. (71)

Using (51) we therefore have for|d| ≫ 1

χ ∼ nm log
(

|d|2 + nm
)

. (72)

V. CONCLUSIONS

We have evaluated the expression of the fading number
of a memoryless IID Gaussian fading channel with scalar
line-of-sight componentd. We have shown that for larged,
the fading number grows likenmgnm

(

|d|2
)

wheregnm

(

|d|2
)

grows likelog |d|2 and wherenm, denoteddegree of freedom
of a MIMO fading channel, is the smaller of the number of
antennas at transmitter and receiver, respectively.

Moreover, we have shown that the optimal input is basi-
cally isotropically distributed,i.e., for nR ≤ nT

X̂
∗ =

(

Ξ
∗

0

)

(73)

with Ξ
∗ ∈ C

nR being anisotropically distributedunit vector,
and fornR > nT

X̂
∗ = Ξ

∗ (74)

with Ξ
∗ ∈ C

nT being anisotropically distributedunit vector.
Furthermore, we have derived closed-form expressions for

some important expectations in the fields of information
theory and communications. In particular, we have computed
E[log V ] and E

[

1
V n

]

for a noncentral chi-square random
variable V with an even number of degrees of freedom.
Moreover, we have shown that the resulting functions behave
nicely and we have found tight upper and lower bounds to
them.

APPENDIX

We will give here a derivation of Theorem 11. We start
with the derivation of an optimal input distribution. From
(26) we know that the optimal input is given asX = R · X̂
and (27) specifies an optimal choice ofR. It remains to prove
that an isotropic unit vector̂X is optimal. To that goal let
V be an arbitrary (deterministic) unitarynT ×nT matrix and
define thenR × nR matrix U as follows:

U ,

(

V 0nT×(nR−nT)

0(nR−nT)×nT
InR−nT

)

. (75)

It is not hard to show thatU is unitary and that for any choice
of V we haveUHX̂

L

= HVX̂.
Let’s now makeV random, i.e., we define anT × nT

unitary matrixV that is Haar distributed3 and independent
of (H,X,Z). Further we define a random unitarynR × nR

matrix U analogously to (75):

U ,

(

V 0nT×(nR−nT)

0(nR−nT)×nT
InR−nT

)

. (76)

Then we get:

I
(

X; HX + Z
)

= I
(

X; HX + Z
∣

∣U
)

(77)

= I
(

VX; UHX + UZ
∣

∣U
)

(78)

= I
(

VX; HVX + Z
∣

∣U
)

(79)

= I
(

X̆; HX̆ + Z
∣

∣U
)

(80)

= h
(

HX̆ + Z
∣

∣U
)

− h
(

HX̆ + Z
∣

∣ X̆,U
)

(81)

= h
(

HX̆ + Z
∣

∣U
)

− h
(

HX̆ + Z
∣

∣ X̆
)

(82)

≤ h
(

HX̆ + Z
)

− h
(

HX̆ + Z
∣

∣ X̆
)

(83)

= I
(

X̆; HX̆ + Z
)

. (84)

Here, the first equality follows sinceU is independent of
the other random quantities; the subsequent equality follows
because givenU alsoV is known and because mutual infor-
mation is not changed when the arguments are multiplied by
known invertible quantities; in the subsequent equality we
use thatUHX̂

L

= HVX̂ as shown above and thatUZ
L

= Z;
in (80) we introduceX̆ , VX; the subsequent equality
follows from the definition of mutual information; then we
use the fact thatHX̆ + Z

∣

∣X̆ is independent ofU or V; and
the inequality follows from conditioning that cannot increase
entropy.

Note thatX̆ is isotropically distributed independently of
the distribution ofX. Hence, an isotropic input will achieve
at least the same mutual information as any other input.

Next, we will derive the expression (66). To that goal we
start with Lemma 1 and plug (15) into (13):

hλ

(

V̂
∣

∣ ‖V‖
)

= h(V) − h(‖V‖2) + log 2

− (m− 1)E
[

log ‖V‖2
]

. (85)

We then chooseV , HX̂ and plug this expression into (26).
Note that we can drop the supremum since we have proven

3A random matrixT is Haar distributed if for any deterministic unitary
matrix M we have thatMT

L
= T.



above that the supremum is achieved by an isotropically
distributedX̂. We get the following:

χ = I

(

‖HX̂‖; HX̂

‖HX̂‖

)

+ hλ

(

HX̂

‖HX̂‖

∣

∣

∣

∣

∣

‖HX̂‖
)

+ nRE
[

log ‖HX̂‖2
]

− log 2 − h
(

HX̂
∣

∣ X̂
)

(86)

= I

(

‖HX̂‖; HX̂

‖HX̂‖

)

+ h
(

HX̂
)

− h
(

‖HX̂‖2
)

+ E
[

log ‖HX̂‖2
]

− h
(

HX̂
∣

∣ X̂
)

(87)

= I

(

‖HX̂‖2;
HX̂

‖HX̂‖

)

+ I
(

X̂; HX̂
)

− h
(

‖HX̂‖2
)

+ E
[

log ‖HX̂‖2
]

(88)

= I

(

S1 + S2;
HX̂√
S1 + S2

)

+ I
(

X̂; HX̂
)

− h
(

S1 + S2

)

+ E[log(S1 + S2)] . (89)

Here, the first equality follows from (26); in the subsequent
equality we use (85); the next step follows from the definition
of mutual information and the fact that squaring a nonneg-
ative argument of mutual information does not change its
value; and in the final equality we apply our definitions (64)
and (65).

The first term in (89) can be simplified as follows:

I

(

S1 + S2;
HX̂√
S1 + S2

)

= I

(

S1 + S2;
dX̂ + H̃1√
S1 + S2

,
H̃2√
S1 + S2

)

(90)

= I

(

S1 + S2;
dX̂ + H̃1√

S1

,
H̃2√
S2

,
S2

S1

)

(91)

= h(S1 + S2) − h

(

S1 + S2

∣

∣

∣

∣

∣

dX̂ + H̃1√
S1

,
H̃2√
S2

,
S2

S1

)

(92)

= h(S1 + S2) − h

(

S1 + S2

∣

∣

∣

∣

S2

S1

)

(93)

= h(S1 + S2) − h

(

S1

(

1 +
S2

S1

) ∣

∣

∣

∣

S2

S1

)

(94)

= h(S1 + S2) − h

(

S1

∣

∣

∣

∣

S2

S1

)

− E
[

log

(

1 +
S2

S1

)]

. (95)

Here the first equality follows from splitting the vector into
two subvectors, one withnT and one withnR − nT com-
ponents (see (61)); in the subsequent equality we perform
some one-to-one transformations that do not change the
value of the mutual information. In (93) we note thatX̂ is
isotropically distributed and that therefore bothdX̂ + H̃1

and H̃2 are isotropic. Hence, the magnitudesS1 and S2

are independent of the directionsdX̂+H̃1√
S1

and H̃2√
S2

. And
finally, the last equality follows from the scaling property
of differential entropy of areal argument.

For the second term in (89) we note that it is independent
of the lastnR − nT rows of H:

I
(

X̂; HX̂
)

= I

(

X̂;

(

dX̂
0

)

+ H̃

)

(96)

= I
(

X̂; dX̂ + H̃1

)

; (97)

and for the last term we get

E[log(S1 + S2)] = E[logS1] + E
[

log

(

1 +
S2

S1

)]

. (98)

Putting this together we yield

χ = I
(

X̂; dX̂ + H̃1

)

+ E[logS1] − h

(

S1

∣

∣

∣

∣

S2

S1

)

(99)

= I
(

X̂; dX̂ + H̃1

)

+ E[logS1] − h(S1)

+ I

(

S1;
S2

S1

)

. (100)

Now note that the same derivation can be done for the
situationnR = nT in which caseS2 = 0. We get exactly
the same result (100) apart from the last termI

(

S1;
S2

S1

)

which is in this situation equal to zero. However, we know
from Theorem 10 the exact value of the fading number for
nR = nT, and hence we see that

I
(

X̂; dX̂ + H̃1

)

+ E[logS1] − h(S1)

= nTgnT

(

|d|2
)

− nT − log Γ(nT). (101)

Plugging this into (100) then yields

χ = nTgnT

(

|d|2
)

− nT − log Γ(nT) + I

(

S1;
S2

S1

)

(102)

which proves the claim.
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