

The Fading Number of Multiple-Input–Multiple-Output Fading Channels with Memory

Stefan M. Moser*

Department of Communication Engineering
 National Chiao Tung University (NCTU)
 Hsinchu, Taiwan
 Email: stefan.moser@ieee.org

1 The Channel Model

We consider a multiple-input–multiple-output (MIMO) fading channel with memory:

$$\mathbf{Y}_k = \mathbb{H}_k \mathbf{x}_k + \mathbf{Z}_k$$

where

- $\mathbf{Y}_k \in \mathbb{C}^{n_R}$ denotes the time- k channel output random vector (n_R receive antennas);
- $\{\mathbf{Z}_k\}$ IID $\sim \mathcal{N}_{\mathbb{C}}(\mathbf{0}, \sigma^2 \mathbf{I}_{n_R})$ denotes additive white (complex) Gaussian noise;
- $\mathbf{x}_k \in \mathbb{C}^{n_T}$ denotes the time- k channel input vector (n_T transmit antennas) satisfying either a peak-power or an average-power constraint \mathcal{E} with signal-to-noise ratio $\text{SNR} \triangleq \frac{\mathcal{E}}{\sigma^2}$;
- \mathbb{H}_k denotes the time- k random $n_R \times n_T$ fading matrix of general (not necessarily Gaussian!) law including memory: we only assume that $\{\mathbb{H}_k\}$ is stationary, ergodic, of finite second moment $\mathbb{E}[\|\mathbb{H}_k\|_F^2] < \infty$, and of finite differential entropy rate $h(\{\mathbb{H}_k\}) > -\infty$ (the regularity assumption). The realizations of $\{\mathbb{H}_k\}$ are unknown both at transmitter and receiver (noncoherent decoding).

2 Channel Capacity

We know that for such regular, noncoherent fading channels the capacity grows double-logarithmically at very high power ($\text{SNR} \rightarrow \infty$):

$$C(\text{SNR}) = \log(1 + \log(1 + \text{SNR})) + \chi(\{\mathbb{H}_k\}) + o(1)$$

where $o(1)$ tends to zero as $\text{SNR} \rightarrow \infty$ and where $\chi(\{\mathbb{H}_k\})$ is a constant called fading number that is independent of the SNR.

*This work was supported by the National Science Council, Taiwan, under NSC 96-2221-E-009-012-MY3.

3 Main Results

Theorem 1. Assume some general stationary channel model with input $\mathbf{x}_k \in \mathbb{C}^{n_T}$ and output $\mathbf{Y}_k \in \mathbb{C}^{n_R}$. Then under very mild conditions on the channel law and apart from edge effects the capacity-achieving input distribution can be assumed to be stationary.

Lemma 2. The capacity-achieving input process of the channel model in Section 1 can be assumed to be circularly symmetric, i.e., the input $\{\mathbf{X}_k\}$ can be replaced by $\{\mathbf{X}_k e^{i\Theta_k}\}$, where $\{\Theta_k\}$ is IID $\sim \mathcal{U}([0, 2\pi])$ and independent of every other random quantity.

Theorem 3. The MIMO fading number with memory $\chi(\{\mathbb{H}_k\})$ is given by

$$\begin{aligned} \chi(\{\mathbb{H}_k\}) &= \sup_{\substack{Q_{\{\hat{\mathbf{X}}_k\}} \\ \text{stationary} \\ \text{circ. sym.}}} \left\{ h_{\lambda} \left(\frac{\mathbb{H}_0 \hat{\mathbf{X}}_0}{\|\mathbb{H}_0 \hat{\mathbf{X}}_0\|} \middle| \left\{ \frac{\mathbb{H}_\ell \hat{\mathbf{X}}_\ell}{\|\mathbb{H}_\ell \hat{\mathbf{X}}_\ell\|} \right\}_{\ell=-\infty}^{-1} \right) \right. \\ &\quad + n_R \mathbb{E} \left[\log \|\mathbb{H}_0 \hat{\mathbf{X}}_0\|^2 \right] - \log 2 \\ &\quad \left. - h(\mathbb{H}_0 \hat{\mathbf{X}}_0 \mid \{\mathbb{H}_\ell \hat{\mathbf{X}}_\ell\}_{\ell=-\infty}^{-1}, \hat{\mathbf{X}}_{-\infty}^0) \right\} \end{aligned}$$

where the maximization is over all stochastic unit-vector processes $\{\hat{\mathbf{X}}_k\}$ that are stationary and circularly symmetric.

References

- [1] S. M. Moser, “The fading number of multiple-input–multiple-output fading channels with memory,” May 2008, to appear in *IEEE Transactions on Information Theory*. [Online]. Available: <http://moser.cm.nctu.edu.tw/publications.html>