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Impact of Feedback and Side-Information on the
Asymptotic Capacity of Single-Input
Multiple-Output Fading Channels
With Memory

Stefan M. Moser, Senior Member, IEEE

Abstract—An analytic expression for the asymptotic capacity of
noncoherent single-input multiple-output (SIMO) regular fading
channels with memory and with partial receiver side-information
is derived and is shown to remain unchanged by causal or
acausal side-information at the transmitter and by a noiseless
feedback link. In particular, the corresponding fading numbers
are identical. Furthermore, the asymptotic capacity of a single-
input single-output (SISO) nonregular Gaussian fading channel
with memory is investigated, and it is shown that the prelog is
unaffected by noiseless feedback.

Index Terms—Causality, channel capacity, fading channel, fad-
ing number, feedback, high signal-to-noise ratio (SNR), multiple
antennas, nonregular Gaussian fading, prelog, regular fading,
side-information.

I. INTRODUCTION

N LITERATURE, there exists a large variety of different
I channel models that try to describe the behavior of mo-
bile wireless communication systems. The historically oldest
models are the coherent fading channels that assume that the
receiver has free and noiseless access to the current fading
realization [1]. This simplification can sometimes be justified,
e.g., at low power when the errors are dominated by the
additive noise. At high power, the noncoherent fading models
describe real systems more accurately because there it is
assumed that transmitter and receiver only have statistical
knowledge of the fading process, but no direct access to the
current fading realization.

There are again many families of such noncoherent models,
reaching from block-fading models (fading remains perfectly
unchanged during a certain time, before it takes on a new, pos-
sibly dependent value [2]-[4]), to underspread fading channels
(the fading process is wide-sense stationary and uncorrelated
in the delay, and the product of the delay and Doppler spread
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is small [5] (and references therein)), and to stationary fading
models [6]-[8].

In this paper, we will focus on the last family. We will
assume that the fading process is some stationary and ergodic
stochastic process of finite energy. It has been shown that
depending on the exact assumptions about this process, the
high-SNR capacity of such a noncoherent fading channel can
vary largely. For example, so-called regular fading channels!
exhibit an extremely slow, double-logarithmic growth of the
capacity in the available power [6]. To describe the exact
asymptotic behavior, [6] introduces the fading number x as
the second term in the high-SNR asymptotic expansion of the
channel capacity C:

Xé EhF{C(Es) — loglog E}. (1)
(Here Eg denotes either the available average power or the
available peak power at the transmitter.) An analytic expres-
sion for its value for general multiple-input multiple-output
fading channels with memory has been derived in [6], [9], [10].
In particular, the single-input multiple-output (SIMO) fading
number with memory is given as’

X({Hg}) = ha (ﬂo ¢'©0 {I:Ig eie‘};:lioo) —log2
+ng Eflog [HolI] —h(Ho[HZL) (2

where {©y} is independent and identically distributed (IID)
~ U((—m,7]) and independent of {H}.

We remark that beside describing the asymptotic capacity,
the fading number is also of importance as an indicator
of the borderline between the logarithmically growing low-
SNR regime and the double-logarithmically growing high-
SNR regime (for more details see [10, Section IJ).

For nonregular fading processes, the growth rate can range
from double-logarithmic up to logarithmic, depending on the
specific assumptions about the process [7]. In the situation of a
logarithmic growth, we are particularly interested in the factor
in front of the logarithm, the so-called prelog,3

— C(Ey)
O£ lim ——2. 3
E,l%go log E; ®)

'Loosely speaking, a fading process is regular if its current value cannot
be predicted precisely even if the infinite past is known exactly. We define
regularity based on the value of the differential entropy rate of the process,
see Section II.

2For a definition of H and hy (), see Section III-A.

3In literature, this term sometimes is also called *multiplexing gain’.
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Fig. 1. SIMO fading channel with causal side-information at both transmitter and receiver and a noiseless causal feedback link from the receiver back to the

transmitter.

For the situation of a single-antenna stationary complex Gaus-
sian fading channel with a line-of-sight component and a given
spectral distribution function F()), —% <A< %, the prelog
(under a peak-power constraint) has been derived in [7]:

PP ({Hy.}) = pe ({X: F'(A) =0}) (4)

where . (-) denotes the Lebesgue measure on the interval
[—1/2,1/2].

In this work, we return to these results and investigate
what the impact of a feedback link and of side-information
is on the asymptotic capacity of these fading channels. Our
contributions are as follows:

1) We derive the fading number of a general SIMO regular
fading channel with memory in the situation when the
receiver has access to some partial side-information
about the fading process.

2) We derive the fading number of a general SIMO regular
fading channel with memory in the situation when there
exists an arbitrary causal feedback link from the receiver
back to the transmitter and when both receiver and
transmitter have access to some partial side-information
about the fading process.

3) We generalize the result of Contribution 2 to the sit-
uation when the transmitter has acausal access to the
side-information.

4) We derive the prelog of a single-input single-output
(SISO) Gaussian fading channel with temporal memory
in the situation when there exists an arbitrary causal
feedback link from the receiver back to the transmitter.

The remainder of this paper is structured as follows. Section II
starts with a detailed definition of the channel model and then

gives some comments about our notation. Section III summa-
rizes some mathematical preliminaries before, in Section IV,
we present our main results together with a discussion.

The rest of the paper then focuses on the derivations: in
Section V, we find a lower bound to the fading number of
a SIMO fading channel with receiver side-information (no
feedback); in Sections VI and VII, we present the derivations
of an upper bound on the fading number of a SIMO fading
channel with feedback and with causal and acausal side-
information, respectively; and in Section VIII, we investigate
the prelog of a SISO Gaussian fading channel with memory
and with feedback.

Some parts of the derivations have been moved to the
appendix. In particular, in Appendix A we focus on detailed
investigations of dependencies between different random quan-
tities, where we rely on a graphical tool presented in [11], [12].

II. CHANNEL MODEL

We consider a communication system as depicted in Fig. 1.
A message M is transmitted over a single-input multiple-
output (SIMO) fading channel with memory. The channel out-
put Y € C™ at time k (with ng components corresponding
to the ng antennas at the receiver) is given by

Y. =H,x. +7Z; (5)

where zj, € C denotes the input of the channel at time k; the
random vector H; € C™ denotes the time-k fading vector;
and Z; € C™ denotes the time-k additive noise vector. It is
assumed that {Zj} and {H}} are independent and that their
joint law does not depend on the channel input. The fading
is noncoherent, i.e., neither transmitter nor receiver know the
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realization of the fading process {Hj}; they only know its
law.

The additive noise process {Zj} is assumed to be a spa-
tially and temporally white, zero-mean, circularly symmetric,
complex Gaussian vector process,

{Z),} ID ~ Nc(0,071) (6)

for some o2 > 0.
The fading {Hj} is foremost assumed to be a stationary
and ergodic stochastic process of finite energy

E[|Hu|?] < oo. )

Then we consider two different scenarios. In the first scenario,
we do not specify a particular distribution, but only make the
additional assumption of the fading being a regular stochastic
process, i.e., {Hy} is of finite differential entropy rate

h({Hg}) > —o0. ®)

In the second scenario we address the more general case
where h({H}}) need not be finite, but we restrict ourselves
to Gaussian fading and to only one antenna at the receiver
ng = 1. Specifically, we assume that {H} £ {H — d} is
a zero-mean, finite-variance, stationary, circularly-symmetric,
Gaussian process of some arbitrary spectral distribution func-
tion

<A<

N| =
| =

The constant d € C denotes the spectral component of the
fading process {H}.

Furthermore, in the first scenario of a regular fading process,
we also consider a side-information process {Si}, Si € C™s,
that carries partial information about the fading process. It
is assumed that the fading process {Hj} and the side-infor-
mation process {S} are jointly stationary, ergodic, of finite
energy, and of finite joint differential entropy rate

A s 1 n Qn
h({Hy,S}) £ lim Eh(Hl,Sl) > —oco.  (10)
It is still assumed that ({Hy}, {Si}) are independent of the
additive noise {Zy}, and the joint law of ({Hy}, {Sk}, {Z«})
does not depend on the channel input.

Finally, we allow a feedback link from the receiver back to
the transmitter. The feedback is assumed to be noiseless (i.e.,
of infinite capacity), but delayed by one time-step, so that the
feedback random vector F';, that is available to the transmitter
at time instant k consists of the complete knowledge of the
receiver at time k — 1, i.e.,

Fp,=Y'! (11)
or, if the receiver also has side-information available,
F, = (Y; ', 8i7). (12)

Such a feedback link is, of course, overly optimistic for any
realistic feedback system, which will always be limited by a
finite rate. However, it will serve as an upper bound on what
is possible with any type of realistic feedback. In fact, we will
show that at high power, feedback will not increase capacity
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in spite of it being noiseless and in spite of the memory in the
channel.

We consider two types of power constraints. Either we will
constrain the input power on average,

n
LS E[x(ar sk R ] <E (13)
"=
or we impose a peak-power constraint,
| X, (M, S5, FY)|* <E,, as,Vk=1,...,n. (14)

We end this section with a few remarks on our notation.
Since this paper compares various different channel models,
we try to be very careful in specifying the current assumptions.
So, we use superscripts “avg” and “pp” to denote an average-
power constraint and a peak-power constraint, respectively. If
neither superscript is given, then the result holds for both types
of power constraints.

Whenever feedback is available, this is highlighted by
a subscript “FB”. For receiver side-information, we use a
“conditioning” notation, e.g., R(Es|{Sx}) represents the rate
for power E; and with side-information {Sj} available at
the receiver. If the side-information is also available at the
transmitter, we use the subscript “c” or “ac” for causal and
acausal side-information at the transmitter, respectively.

Clearly,

CPP(Es) < C™¥(E,) < Crg'(Es)
CPP(E;) < Crp(Ey)
C'(E{Sk}) < CUENSK}) < CL(Esl{Sk}),
1 € {avg,pp}. (17)

15)
(16)

We meticulously distinguish between random and nonran-
dom quantities. A random variable is denoted by a capital
Roman letter, e.g., M, while its realization is denoted by the
corresponding small Roman letter, e.g., m. Vectors are bold-
faced, e.g., H denotes a random vector and h its realization.
Constants are typeset either in small Romans, in Greek letters
or in a capital sans-serif font, e.g., F()\) or E;. The only
exception to these rules is the mutual information functional
that is typeset as I(-;-) as is very common in literature. Sets
are typeset in calligraphic font, e.g., V, and C and R denote
the fields of the complex and the real numbers, respectively.

Entropy is typeset as H(-), differential entropy by h(-), and
by Hy(-) we denote the binary entropy function

Hy(p) £ —plogp — (1 = p)log(1 —p), pe€[0,1]. (18)
For a unit vector H, we write hy(H) for the differential
entropy with respect to the surface area of a unit sphere in
C™, see Section III-A.

By M ~ U(M) we mean that the random variable M
is uniformly distributed over the set M, and Hz stands for
(H,, ..., H;).

We exclusively use the natural logarithm, and all rates are
therefore specified in nats.
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III. MATHEMATICAL PRELIMINARIES
A. Differential Entropy and Expected Logarithms

In [6, Section VI.D] (and in much abbreviated form also
in [10, Section II]), one finds an extensive discussion of
fundamental properties of differential entropy and expected
logarithms. The main point made there is that for a random
vector H that is of finite second moment E [|[H||?] < oo and
of finite differential entropy h(H) > —oo, expected logarithms
and differential entropy expressions are well-defined and finite.

This can be understood when realizing that differential
entropy can be written as the difference of two nonnegative

parts:
h(H) = h"(H) — h~ (H) (19)

where
h*(H)é/ fra(h)log —— L dh >0 (20)
{h: 0< fra(h)<1} fu(h)

h™(H) 2
{h: fu(n)>1}

fu(h)log fu(h)dh >0.  (21)
Note that for the differential entropy to be defined, at least
one of the two integrals (20) or (21) must be finite.

The assumption of a finite second moment now guarantees
a finite upper bound on h*(H) and therefore on h(H), and
the assumption of a finite differential entropy rate makes sure
that A~ (H) is finite. Moreover, this analysis can be extended
to the expected logarithm: The assumption of finite energy
trivially guarantees that E [log |[H||?] is bounded from above
(by Jensen’s inequality), while the boundedness of h~ (H)
provides a finite lower bound on E [log | HJ?].

These arguments can also be generalized to a situation with
memory. There a finite second moment and a finite lower
bound on the entropy rate will make sure that all differential
entropy expressions and expected logarithms are well-defined
and finite. Moreover, we can also include situations when we
condition a differential entropy expression or an expected log-
arithm to one out of a finite number of disjoint events that form
a partition. Again, the assumption of a finite second moment
and a finite differential entropy rate will make sure that such
conditional entropy or logarithm expressions remain finite.
Compare also with the derivations shown in Appendix E.

Moreover, all these results also hold for the differential
entropy hy(-) with respect to the surface of the unit sphere
in C™ as defined in [6, Section VI.D]. Recall that if we
split a complex random vector H € C™ up into magnitude
|H|| € RS and direction

~ o H

= —— 22
TH] 22

then the latter is a unit vector and therefore has zero measure
with respect to a probability distribution over C™. We there-
fore define a new probability density function (PDF) fIi‘I()
with respect to a measure A that lives on the m-dimensional
complex unit sphere. The corresponding differential entropy
then simply is defined as

ha(H) 2

E [~log £} (H)]. (23)
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The connection between h(H) and hy(H) is as follows.

Lemma 1: Let H € C™ be a complex random vector with a
finite differential entropy h(H). Let ||H|| denote its magnitude
and H its direction as in (22). Then

h(H) = h([H])) + hx (H||[H]) + (2m — 1) E[log | H[] (24)
= ha(H) + h(|H|||H) + (2m — 1) E[log [|H]|]. (25)
Proof: See, e.g., [10, Lemma 2]. ]

B. Stationarity and Joint Differential Entropy Rate

The joint differential entropy rate of two jointly stochastic
processes {Hy, Sy} is defined as
h({Hk,Si}) = lim — h(HY, S7) (26)
if the limit exists. By our assumptions of {Hy, S;} being
jointly stationary, ergodic, of finite energy and of finite differ-
ential entropy rate we make sure that the limit indeed exists
and is finite. Moreover, it is not difficult to show that — under
above mentioned assumptions — also

h({Hy,Si}) = lim h(H,,S,|H{ ', s77"). (@27
ntoo
For the latter we usually write
liTm h(H,,S,|H ', S771)
= lim h(Ho, SolH™),1,S7) 1) (28)
= h(Ho,soyH ,S”L) (29)

where the first equality follows from stationarity and the
second is a convenient shorthand. One needs to be aware,
however, that this shorthand hides a limit (which exists and is
finite).

Note that there exist many variations of such entropy
definitions. Under our assumptions, all these different expres-
sions are well-defined and finite. For example, the conditional
entropy rate can be given in various different equivalent forms:

h({Hc}|{Sk})

£ lim = h(HP|SY) (30)
= lim L (h(RE}, 87) — h(S7) G1)
= h({Hg,Sk}) — h({Sk}) (32)
= lim {A(H,,, 8, [H{ ™ 877) —h(S,[ST7) ) @)
- iiTn;{h(Hn H} 1, S7) + h(S,[Hp L 87
~h(Sals77Y) } (34)
- 7{%?O{h(ﬂn|ﬂy—1, S7) — I(SwH{ TSI} 39)
= TlLiTrélo h(HoHZ),,,S%,41) (36)
= h(Ho[HZ},,8% ). 37)

Here, (36) can be argued using a tool explained in Appendix A.
Again, the reader is warned to keep in mind that the shorthand
(37) actually involves a limit, but that this limit does exist and
is finite.
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C. Duality-Based Bounds on Mutual Information

Based on an identity given in [13] and [14, Section 2.3,
Equation (3.7)], a duality-based upper bound on the mutual
information between input and output of a memoryless channel
is presented in [6], [15]. For convenience, we review this
bound here quickly, however, we state it without proof and
only in the form needed for our derivations. For a more general
version and for the proofs, we refer to [6], [15].

Lemma 2: Consider a memoryless channel with input X €
C and output 7' € C. Then

I(X;T) < —h(T)|X) +1og7r+ulog77+logl“<u, ;) + %
1
+ (1 —p) Ellog(|T)? +v)] + ; E[(IT)?] (38)
where 1,7 > 0 and v > 0 are free parameters.

IV. MAIN RESULTS
A. Regular Fading with Memory and Receiver Side-Informa-
tion
Theorem 3: Consider a SIMO regular fading channel with
memory as given in (5) and (8), where the receiver has
access to some partial side-information {Sj} according to the
description around (10), and where the input is subject to either
an average-power constraint (13) or a peak-power constraint
(14). Then the capacity grows double-logarithmically in the
power and the fading number is given as

V({H[(S4) 2 T {C(E|{8,)) ~ loglogE, |
=iu(ﬂbé@°{ﬂgé@};iaysgw)
—log2+nRrE [1og ||H0H2]
— h(Ho[HZL,,8% )

(39)

(40)

where {O} is an independent random process that is IID
~ U((~m, 7).

Proof: A lower bound under the assumption of a peak-
power constraint is derived in Section V. The result then
follows because

X({HRH{Si}) < i ({Hi}{Se})

and from Theorem 4 below. ]
Note that x ({Hy}|{Sk}) can be expressed with the help of
the SIMO fading number x({Hj}) with memory, but without
side-information as given in (2) as follows:

X({Hp}{Sk}) = x({He}) + I (Ho;S?  |H™L)
Gl ]
(42)

(41)

B. Regular Fading with Memory, Feedback, and Causal Side-
Information

Theorem 4: Consider a SIMO regular fading channel as
given in Theorem 3, but additionally assume a noiseless causal
feedback link from the receiver back to the transmitter and
assume that the side-information also is revealed causally to

3503

the transmitter (see Fig. 1). Then the capacity remains as
given in Theorem 3, i.e., it grows double-logarithmically in
the power and has the same fading number

xee.e ({Hr}H{Sk}) = x ({Hx}{Sk}).- (43)
Proof: Using
xrpe ({Hi}[{Sk}) > xP ({Hi}|{Sk}) (44)

and Theorem 3, we get a lower bound under the assumption of
a peak-power constraint. An upper bound, under the assump-
tion of an average-power constraint, is derived in Section VI.

|
We see that feedback and transmitter side-information do not
change the asymptotic capacity in spite of the memory in the
channel.

Corollary 5: Any type of feedback or causal side-informa-
tion at the transmitter does not increase the fading number of
a general SIMO fading channel with memory. As a matter of
fact, it is not difficult to adapt the proof to show that even
the revelation of the past fading realizations at the transmitter
does not increase the asymptotic capacity.

C. Regular Fading with Memory, Feedback, and Acausal Side-
Information

Theorem 6: Consider a SIMO regular fading channel with
feedback and side-information as given in Theorem 4, but
assume that the side-information is revealed acausally to the
transmitter in advance. Then the capacity still grows only
double-logarithmically in the power and the fading number
remains unchanged:

xrac ({He}H{Sk}) = xre.c ({Hi}[{Sk}) (45)
= x({Hk}[{Sk}). (46)

Proof: A lower bound follows from
xeBac({Hi}[{Sk}) = x™ ({Hx}|[{Sk}) (47

and Theorem 3. An upper bound, under the assumption of an
average-power constraint, is derived in Section VIIL. [ ]
Note again that the result continues to hold even if the past
fading realizations are revealed to the transmitter.

D. Nonregular Gaussian Fading with Memory and Feedback

Theorem 7: Consider a SISO nonregular Gaussian fading
channel with spectral distribution function F(-) as described
around (9), and consider a peak-power constraint (14). Then
the prelog of the asymptotic capacity with a causal noiseless
feedback link is identical to the prelog without feedback and
is given as

Mps ({Hi}) = TP ({Hy}) = pe({A: F'(\) = 0}). (48
Proof: A lower bound follows from
IF5 ({Hi}) > TIPP({Hy}) (49)

and from the results given in [7]. An upper bound is derived
in Section VIIIL. ]
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E. Discussion

We see that the asymptotic capacity of the large class of
SIMO regular fading channels remains unchanged even if one
allows causal noiseless feedback and transmitter side-informa-
tion. This once more exemplifies the extremely unattractive
behavior of regular fading channels at high SNR: besides the
double-logarithmic growth [6] and the very poor performance
in a multiple-user setup (where the maximum sum-rate only
can be achieved if the channel is used exclusively by one user
only and the other users can never communicate at all [16]),
we now also have shown that any type of feedback does not
increase capacity in spite of the memory in the channel.

Similarly, also the capacity of nonregular Gaussian fading
channels is not strongly increased by feedback as the factor in
front of the logarithm is not improved by feedback. Note that
for proof-technical reasons we have only proven the case of a
peak-power constraint. We believe that the channel will exhibit
the same behavior also under an average-power constraint.

We would like to point out the main challenges for the
derivations given in Sections V-VIII:

1) Due to the feedback, the channel input, the fading, and
the additive noise become dependent.

2) We cannot rely on the important auxiliary result given in
[10, Theorem 3] that shows that the optimal input is sta-
tionary. Indeed, since the transmitter continually learns
more about the fading process through the feedback,
the optimal input changes, i.e., the system is inherently
nonstationary in spite of the stationary fading and noise
processes.

3) We cannot rely on the important auxiliary result given
in [9, Theorem 8] that shows that the capacity-achieving
input distribution escapes to infinity, i.e., X — oo as
Es — oo almost surely.

Particularly the implicit dependence between the input and the
channel noise introduces very subtle challenges. Indeed, we
stumbled over this in [15], [17], [18]: While the asymptotic
results given there are correct, their derivations contain a flaw
that we only managed to fix very recently. Moreover, the
results in [15] and [18] with respect to the feedback capacity
for finite power (i.e., [15, Section 8.2.2], [18, Theorem 1]) are
wrong or at least remain unproven.

Even though the derivations given in Sections V—VII turn
out to be quite elaborate, by the following hand-waving
argument, one can nevertheless intuitively understand why
regular fading channels behave so poorly. To that goal note that
since the fading process is assumed to be regular with a finite
differential entropy rate, it is not possible to perfectly predict
the future realizations of the process even if one is presented
with the exact realizations of the infinite past. Nevertheless the
feedback allows the transmitter to make an estimate of future
realizations. Based on these estimates, the transmitter can
then perform elaborate schemes of optimal power allocation
over time: if the channel state is likely to be poor, it saves
power and uses it once the channel state is likely to be good
again. Unfortunately, due to the double-logarithmic behavior
of capacity, such power allocation has no effect at all: for any
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constant ¢ > 0 (¢ can be chosen arbitrarily large!),

Eli? {log log(tEs) — loglog Es}

= Eh? {log(log t + log E5) — loglog E} (50)
= Jim {log(log E,) — loglog E,} (51)
= 0. (52)

So not only the double-logarithmic growth is left untouched,
but also the second term, i.e., the fading number, remains
unchanged.

V. A LOWER BOUND ON THE FADING NUMBER WITH
RECEIVER SIDE-INFORMATION

To derive a lower bound on capacity of the channel model
described in Theorem 3 (i.e., without feedback or transmitter
side-information), we choose a specific input distribution. This
naturally yields a lower bound. Let {X}} be of the form

Xi 2 Ry, e©*. (53)

Here {O} is a sequence of IID random variables that are
uniformly distributed on (—, 7]. The stochastic process { Ry, }
is chosen to be independent of {e'®*} and to consist of random
variables Rj, € R{ that are IID with

log R} ~ Ll([log z2. log Es]) (54)
where we choose z2; as
Thin 2 log Es. (55)

Note that this choice of {X}} satisfies the peak-power con-
straint (14) and therefore also the average-power constraint
(13).

We now fix some (large) positive integer s and use the chain
rule and the nonnegativity of mutual information to bound:

n

1, 1 ,
EI(X{L§Y?,S?) = EZI(Xk;YiZSﬂXf*l) (56)
k=1
1 n—k ‘
>~ > I(Xe YR STXFTY). 57)
k=r+1

Then for every x + 1 < k < n — k, we can use the fact that
{Xy} is IID to lower-bound I (Xy; YT, S7|X{ ") as follows:

(X YT, 87X

> I( Xy YR syt | x ) (58)
= 1(X Y SR X (59)
= I(Xi; Y3t Sy 250 2T X))
— (X 2y T Y S X)) (60)
< 61 (Zmin, k)
> I(Xus Yy, Zi ) 2yt Sy | X R
— 61 (Zmins K) (61)

= I(Xe; Yo, {He X}y AHX S XET))
- 51 (:Emim H) (62)
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_ k+k ~ i k+k
- I(Xk;Y’“’ H;—, {IH | R rmppro {He et (=k+1
S’Zfﬁ) — 01(Tmin, K) (63)
. k— S SRICYR LA k+r
ZI(Xk?YkaHk;_,lg?{Hze ¢ Z:k-ﬂ,—l’ski—ﬁ)
-6 (wmina "i) (64)
. k— or 19 ke k
_ I(Xk,Yk’Hk_i, 0 sktg)
— 01 (xmina "‘5)' (65)

Here, (58) follows from dropping some random quantities
in the argument of the mutual information term; (59) holds
because {X} is IID and independent of fading and side-
information; (60) results from the chain rule; and (61) follows
from the following lemma.

Lemma 8: Let { X} be as specified in (53)—(55). Then

I(Xps Zy L ZE YR Ste Xpm ) < 61 (%min, 5) (66)

where 61 (Zmin, k) 18 defined in Appendix B, is independent of
k and the distribution of { X} }, and tends to zero as xmy, 1 0.
Proof: See Appendix B. ]
In (62) we firstly extract {H,X,} from {Y,} using the noise
{Z,} and then drop {Y,,Z,} because it is independent of
(Xk,Y})) when conditioned on {H,X,}; in (63) we split
H, X, into magnitude and direction for { = k+1,... .k + K,
and extract Hy for / = k — k,...,k — 1 and then drop the
conditioning since it is independent of the remaining terms;
in (64) we drop some arguments; and (65) follows from our
choice of {X}} being IID.
Hence, using (65) in (57) we get

1 n.yn Qn
EI(XI 7Y1asl)

1 n—k k1 A e k+k k+k
> n Z (I(Xk; Y’“‘kam {Hf € ki1 Sk*“)
k=rk+1
- 51 (xmina '%)) (67)
n— 2k . -1 [y, 91" K
= - <I<X07Y0’H—K7{H€e e}le’s_”)
- 51 (Imina H)) (68)

where (68) follows from stationarity. Letting n tend to infinity
we obtain

C(EI{Sk}) = I(Xo; Yo|HIL, {H, e}, 8%,

! (xmim H)- (69)

We next let the power grow to infinity Eg T oo and use the
definition of the fading number. Note that the distribution of
Xy (the product of (54) with the circularly symmetric law
from ¢'©0) achieves the fading number of a memoryless SIMO
fading channel with side-information [6, Proposition 4.23],
[15, Proposition 6.23]. Moreover, our choice (55) guarantees
that &1 (min, <) tends to zero as Eg 1 co. Therefore, we obtain
the following bound:

x({Hx}|{Sk})

= Jim {C(E,|{Sk}) ~ loglog Es} (70)
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> E@C{I(XO;YO‘H:;, {H,c® ) SEK)
~loglog Es — & (min, /i)} 1)
= XD (HO‘H:L {H,dO S’in> (72)
— (o ' [HZL {FL €}y 87,
—log 2 + ng E [log || Hy ]
. h(HO‘H:;, {H,e® ) s'jﬁ). (73)

Here, in (73) we use the expression for the memoryless SIMO
fading number with side-information [6, Equation (108)]:

xup(H[S) = hy (ﬂ 6@‘3) —log 2
+ ng E [log [|H||] — h(H|S). (74)

Next, by using the definition of mutual information and by
repeatedly applying the chain rule, we note that

h)\ (I:IO ei@(]

{H o) HZLse,)

{F e}y sp)
— 1(Ho e HIL, STL {HL 9}, S7)

= i ({F €} [85) = ha ({FL e}
— 1(F o HTL ST {00 s)
iI(SO;H:;,S:; (A, ei@f};:1,5§)

= ({0} ) — 1({H ey 8p)
— ({1 e}y, )+ 1({F e}y 58
—I(ﬂo ¢ 8o H-L 8”1 {H, ei@f};:1,8$)
+h(So| {1, O} 87)
— h(So[{HL O} 8t HCL 87

= i ({H O}y ) = h(SE) + R (S| {Fe e}y,
— ha({F1 €O}, ) + n(S5) — n(S5[{L 9 )
—({f ey, spHzL ST
+1({F, o) SFHL ST )
+h(Sp[{H e}y, ) - n(ss| (o))
— h(So[{H O} 8, 1L 87

=i ({H ) 4 n(SO [ {Fee® )y )
— i ({Heee} L)
- r({f ey, spHCL ST

= h)\ (I:IO ei@o

(75)

sg)

(76)

(77)

(78)

c1({B, 0oy sy s
—n(st e )
_ h(

So| {1 ¢}, S}, HZ}, 87}
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£ (A, 08, | (00 ) 9

(oo )
+h(S?, [ (R e )
— 1({H O}y S HTL ST
+I({H, &) srHCL ST )

(S, ‘{ng'e‘f}(, - ST H, 87 )
(H, 6'®€}g:_n) — h(S[l,{ {ﬂf eiez}g=—m>
{Ac0," )
+ i (B 0| (1, 082,
—r({E oy, syl s )
Fr({i e spmLs )
(S| (B, 0%}y spH7L s
(Sl {00} 572)
o (B 0% | {09 80,).

Here, in (76) we add and subtract the same term; and (79)
follows by stationarity and again by adding and subtracting
the same term.

Furthermore,

_h(HO‘H,H,{Hw'@z}e i )

_ —h(HO,So‘H:,{,S - {H ei@”}?:lvs'f)

+ h(s(in
— hy (ﬂo ¢'©0

(80)

(81)

+h(SofFZL, SZL {F, €1}y 8) (82)
= —h(Ho,So|HZ},S_})

+ 1(Ho, So; {H, e}, S5 |1} 871
+h(So[HZL ST {0 8y) (83)
= —h(Ho,So|HZ},S})
+1(H2,.,8 . {69 ST)

— (LS (A i)

+ (o[ STL {F, €O st). (84)

Plugging (84) and (81) into (73) we hence obtain

X({Hi}{Sk})
> I({H;e'of}é S5 HDL ST

-1 )
+I({ng'®@}zzl, H™L S~ )
—h(SO‘{ﬂgeigf}Ll, rH-l §- )
" h(SO‘ (H do ! s:;)

+ hy (ﬂo 90 | {H, ' };:l_ﬂ, S(lﬁ)
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—log 2 + ng E [log | Ho||?] — h(Ho, So[HZ,,,SZ})
+ I(H(lm S0, {H o) S’f)
— I(BZLSTL (o)) sy
+h(So[HZL ST {0 sp)

= i (Ho e |[{F e} 1 80,)
—log 2+ ng E[log |[Ho||*] — h(He|HZ},S%,)
+ (S| {Fre O} STH) — n(So|HZL 87

(85)

+I(H9H, 0 {H o) 1,8“)

- I(H_fm ST {H O}, SS). (86)
We next point out that

h(So| {Fe @}, STL) — n(So|HZL S7L)

= h(So| {HLe e}t s71)

— h(Sol{Hee® ), ©7,,S7)) (87)
= h(So|{Fr o} s1)

—h(so\{ﬂee‘ef};;m{||Hz||};;,m “Ls7L) 8®)
= 1(Sos ([} 2 0k [ e sTh)  689)
> 0. (90)

Note that, using the tool from Appendix A, one can show that
the inequality actually holds with equality.* Finally, we let %
go to infinity. Stationarity of the input and the fading process
now makes sure that the two mutual information terms in (86)
cancel, and we obtain

X({H}{Sk})
> i (Ho e [{F1, 9}, 1 80 ) ~log?
+ ng E[log || Hol[?] — h(Ho[HZL,, 8% ).

oD

VI. AN UPPER BOUND ON THE FADING NUMBER WITH
FEEDBACK AND CAUSAL SIDE-INFORMATION

A. Overview

While the basic structure of the following derivation is
relatively straightforward, there are many subtle details that
need to be taken care of and that complicate the proof
considerably. We therefore try to give a rough outline of the
proof first.

We start with the standard approach for deriving a converse
using Fano’s inequality:

n
%ZI(M;Yk, Sk YT SEY) + 6,
k=1

Regc(Es|{Sk}) <
(92)

#This also can be argued indirectly: Since in Section VI we derive an upper
bound on the fading number without this term, it follows that the term must
be zero.
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We then would like to split the mutual information term into
three parts:

I(M; Yk, Se|YEH 8T
< I(Xy Yi[SY) + T(H] ™Y Y| X, ST)
— (Y'Y |Sh) (93)
where the first term basically corresponds to the memoryless
SIMO fading channel without feedback, and where the other
two terms are correction terms taking care of the memory.
While indeed these three terms are bounded separately in
Sections VI-D to VI-F and then combined in Section VI-G
to the final result, there are many obstacles on the way that
need to be circumvented.

First of all, note that for small k, the term I(M; Y}, S|
Y’ffl,S’ffl) goes through a transitional phase because for
small k the transmitter has only a very limited knowledge of
past fading realizations. Only for large %k the transmitter can
properly rely on the statistical knowledge from the feedback.
In order to handle this transition phase, we split the sum in
(92) up into two parts:

> I(M; Y, S| Y 8
k=1

S|

_ % S (M Y, S YA 851
k=1

1
+ =

> I(M; Y, S| Y SEY).
k=rk+1

(94)

The first part will then be bounded very roughly with the only
aim to make sure that it will disappear once we let n tend to
infinity. So we can focus on the second sum.

Then, as we are interested in the asymptotic capacity, we
would like to think that an optimal input satisfies X} — oo as
Es — oo. Unfortunately, while it is possible to use stationarity
of the channel model to prove such a result for the capacity-
achieving input of a channel without feedback, in the case
with feedback, the system is inherently nonstationary because
the knowledge at the transmitter grows at every time step and
therefore changes the optimal input. To solve this dilemma,
we introduce a case distinction on whether | X| is larger or
smaller than some given threshold &;,, with 5, denoting the
probability of the former case. In the derivations below, these
two cases are expressed by the indicator random variable By
as By = 1 or By = 0, respectively. We then need to prove
that as E; becomes large, it is optimal to have 8, — 1. Note
that we have to take particular care here to make sure that we
only start to twiddle with E; once we have loosened n — oo.
For that reason we make an effort in deriving rough bounds
(that are independent of k) for terms that have a factor 1 — [y,
in front (i.e., terms that will disappear anyway once we prove
that 8, — 1).

Finally, one needs to be aware that via the feedback and
the side-information, the current channel input X depends
on the past fading and therefore also on the current fading.
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So, for example, the expression E [|[Hj||?| X |?] that in the
case without feedback can be evaluated trivially as

E[IIH||*[ X5 "] = E[IHL|1*] E[1Xk[?] (95)

becomes an unsolvable problem as the exact dependence of the
unknown optimal input distribution on {Hy} is intractable.
Purely because of this expression, we need to introduce a
second case distinction on whether ||Hy||? is larger or smaller
than some chosen threshold ¢. In the derivations below, these
two cases are expressed by the indicator random variable Ay
as A = 1 or Ay = 0, respectively. The case of ||Hy||? >t
is then bounded very roughly with the only aim to make sure
that all terms belonging to this case will disappear once we
let ¢ tend to infinity towards the end of the derivation. For the
case of ||[H||? < t, we can then bound

E[IHI1?|Xk|*|Ar = 0] < tE[|Xk[*|Ax =0]. (96)

There are many other places where one has to be very
careful with dependencies. For example, a conditioning on
B = 1 cannot simply be dropped even if the expression
only involves the fading process because the fading process
depends via the feedback on the input and therefore also on
By

In many situations, we rely on a graphical tool described
by Massey [11], [12] that allows to figure out whether two
sets of random variables are independent of each other when
conditioned on some more random variables. Note that the
dependencies are often so subtle that it is essential to have a
graphical proof, rather than using hand-waving explanations
and engineering intuition. All these independence investiga-
tions are presented in Appendix A.

B. A Useful Inequality

In the following we will often make use of the following
inequality.

Lemma 9: Let T' > 0 be a nonnegative RV and let J €
{0,1} be a related binary indicator RV with Pr[J = 0] = p.
Then

E[T] > pE[T]J = 0]. ©7)
Proof: By the rule of total expectation we have
E[T) = pEITIS = 0]+ (1= ) E[TIT = 1] ©8)
> pE[T]J = 0] (99)
where the inequality holds because 7' is nonnegative. [ ]

C. Setup

We start by assuming that there exists a sequence of coding
schemes with |e"Rm<(E[{St}) | codewords of blocklength n
— i.e., for each n the rate of the code is not larger than
Repc(Es|{Sk}) — that all satisfy the average-power constraint
(13) such that the error probability Pr[M # M] tends to zero
as n tends to infinity. Then

H(M) = log |eRee<(E{SkD | (100)
> log (emRmeEI{SrD) _ 1) (101)
= nRFB,c(EsHSk}) — €n (102)
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with €, | 0 as n 1 oco. Next recall Fano’s inequality [19,
Section 9.6]: Let M take on |M]| values. Then

H(M|M) <log2+ Pr[M # M]log|M|.  (103)
We therefore have
RFB,C(ES‘{Sk})
S%H(MH@ (104)
- %I(M;M) +%H(M|J\Zf) + (105)
< lI(M;M)
n
Y nR .C(ES|{S })
N log2+Pr[M #* M]nlogLe FB k J N % (106)

log 2 .
< —I(M; M) + 2=+ Pr[M # ] Rep.o(E{Se})
+ (107)
n
< %I(M;Y?,S?) 4 los2
+Pr[M # M) Repe(E|[{Sk}) + — (108)
_1 > I(M; Y, Si|YE 817 + log2
n 1 n
Pr[M # NI] Reno(El{Si}) + = (109)
_Ely . k-1 k-1
= Hk:l[(M,Yk,sle ;ST
1 < k-1 qh-1y , log2
+ = Z I(M; Yy, SplY 1,871 + —==
k=r+1 n
+Pr[M # N Repe(E,[{Si}) + = (110)

Here, (104) follows from (102); (106) follows from (103);
and in (108) we apply the data processing inequality [19,
Section 9.6].

We next need the following lemma.

Lemma 10: For the channel model as given in Theorem 4,

I(M; Yy, Sp|YE 87
1 E
< nalog (1+ - €[] )
+ I(Hy ', Sf~ 1 Hy, Sy) (111)

where Ej denotes the average power of X at time k,
averaged over all realizations of message, feedback, and side-
information, i.e.,

E, 2 E[\Xk(M, S’f,F’f)ﬂ. (112)

Proof: See Appendix C. ]
We apply (111) to the first sum in (110), and use Jensen’s
inequality and stationarity to obtain:

ST Y Sy st
k=1

<2 Zanog<1+E[H GE)

k=1
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1 K
— H
+I€kZ:1h( ks Sk)

1 & ekl
—;Zh(Hk,Sk\H’f L sih (113)
k=1
< mglog( 1+ — E|H|| 1iEk + h(Ho, So)
NR 108 k Kk:lg 050

- Eh(H’f, St). (114)

Hence,
RFB,C(ESHSk})
K 1
< —ngp log<1 + —E [||H0H2]
n NR

1 P 10g2
— — h(HT,S7) +

1 <<E
= k>+“h(Ho,So)
ﬂk:lo- n

+Pr [M # M] Res.c(Es|{Sk})
Z I(M;Yk,Sk|Y’f_1,S’f_1).
k=rk+1

+—+— (115)
n
Note that apart from the last term, all terms will tend to zero
as n tends to infinity. We therefore henceforth concentrate
on the terms inside of the sum in (115), i.e., we look at
I(M; Yk, Sp|Yi 187 for s +1 < k < n.
We introduce the indicator random variables A, defined as

ape 1R
0 otherwise

for some given ¢ > 0 that will be specified later. Moreover,
we define

(116)

o £ Pr[Ay, = 1] = Pr[||Hy||* > t]. (117)

It follows from Markov’s inequality [20, Section 5] that

E[|Hg|? E [||Ho]|?
t t
and therefore (by conditioning that reduces entropy)
H(AK| YT, ST) < H(Ap) (119)
= Hb(ak) (120)

2
. Hb<E[||I§0|| ]) a2

where Hy(-) denotes the binary entropy function (18) and
where we choose ¢ large enough such that

E[|Ho|*] <L (122)
t 2
We now bound as follows:
I(M; Yy, Sp|Y 1,85
< I(M;Yy, Sk, Ae[YE 1,877 (123)
=I(M; Ap[Y}', 8771
+ I(M; Yk, Se|YF1 ST Ay) (124)

=H(A Y} 1,871 —H(A, Y1, 8i 71 M)

>0
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+ o I(M; Y5, Sp[YEH ST A = 1)
+(1— o) I(M; Yy, Sp|Y1, 8571, Ay =0) (129)
<1
< H(A|YE st

1 E
+OékTLR10g<].+E[||H()||2|A0 = ].] k2>

NR Qo
+ap (HY ST Hy, Sy |Ay = 1)
+I(M; Y, Se[YF 1,851 A, =0) (126)

E[||Hol? E[|Ho|[?|Ao = 1] tE
+Mlog 1+ [I1Ho 2] 02 ]—:
t nr E[[[Ho[?] o

E[lIH, ]

+ I(HZL, 8”1 Ho, S|4 = 1)

+ I(M; Yk, Se[YF 1, ST A, =0). (127)

Here (126) follows from a conditional version of (111) of
Lemma 10 with Ej, replaced by Ej/«y because

E UXk (M, S’f,F’f)|2‘Ak - 1}

1

< E [\Xk (M, Sk, FF) 12] (128)

_E (129)
a,

(see Lemma 9); and (127) follows from (121), from (118) and
the monotonicity of ay +— aylog(1l + const/ay), and from
stationarity combined with additional random variables in the
argument of mutual information.

Hence,

n

L3 (Y YY)

k=r+1
< lekzi:le (W)
-2l éleg<l e f)
) E[Illjo||2] %XH:I(HZ;,SZ;;H&SOMO =1)
k=1
+% Z [(M: Yy, Sp|YE1, 851 4, =0)  (130)

k=r+1

o (c1)

ng E[||Ho||?] E[||H0H2|A0:1] tE,
L) G = W =

E[|Hgl?
+MI(HI;782;;HO,SO|A0:1)

1 n—kr «— - B

SIS (MY S| YT SE A= 0)

k=r+1
(131)
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where we have added some nonnegative terms to some of
the sums, used Jensen’s inequality, and relied on the average-
power constraint (13) that guarantees that

1 n
= Z E, < E,.
n
k=1
Hence, combining (131) with (115), we have
Rep.c(Es|{Sk})

K 1 1 <~ Ep K
< —nglog| 1+ —E[|Hol?] =) — — h(Hyp, S
< R 0g< +o [l 0|]sz_:10_2>+n (Ho, So)

(132)

1 log 2 .
— ~ h(H,ST) + % +Pr[M # M] Rego(E,[{Sk})

E[||Ho|?
+€”+Hb< [ M)
n t

wEUItHoH%g<1  ElIHlPl4 = 1 tEs>

ng E[|Hol2] o2
" E[|IHol|?]
t
n—kK

I(HZL,,SZL;Ho,So|4o =1)

—00)

> I(M; Y, Si| Y SF Ay =0).
k=r+1

1
4+ =
n

n—~kK
(133)

Next we introduce a second family of indicator random
variables. For some &.,;, > 0, we define

B 2 {1 if |Xz|.2 Emin, VO=1,...k a34)
0 otherwise
and
By £ Pr[By, = 1|4, = 0]. (135)
Then

I(By; Yi|SY, Ax = 0)
= H(By|SY, A, = 0) — H(By Yy, ST, A = 0)  (136)
< H(By|Ar =0) (137)
= Hp(Br). (138)
Note that in the situation without feedback, it has been shown
in [9] that asymptotically for Eg 1 oo the probability 5; tends
to 1. We cannot use this result here due to the feedback. It
will turn out, however, that the result still holds.
We now bound each term in the sum in (133) as follows:
I(M; Yk, Se|Yi™! S A, =0)
=I(M;S|Y} ', 8f7 1 A = 0)

=0, see Fig. 3 in Appendix A

+I(M;YR|YE!, S, A =0) (139)
=I(M, Y} ' Y,|SY, A = 0)

—I(Y77' Y, |SE, A, = 0) (140)
< I(M, Y X, HY 7Y |SE A = 0)

— I(Y;Z L Y |SE, Ay = 0) (141)

= I(X, Hy 'Y, [SE, A = 0)
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+ I(M, Y5 Y| X, HY 71, SE, A = 0)

=0, see Fig. 4 in Appendix A

— I(Y;Zh Y |SE, Ay = 0) (142)
< I(Xy, By, Hy ' Y,|ST, A = 0)

—I(Y;Z L Y |Sh, Ay = 0) (143)
= I(Br; Y |SF, A, = 0)

+ B I(Xi, HY 1Y, | ST, Ay = 0, By = 1)

+ (1= Be) I(Xi, HY 1Y, |SE, Ap = 0, By, = 0)

—I(Y 2L Yi|SE, A, =0) (144)

< B I(Xk§Yk|S]f7Ak =0,B,=1)
+ Bk I(H’f_l;Yk’Xk7S]f’Ak —0,B = 1)
— I(Y} 5 Y|ST, Ak = 0) + Hy(65x)
+ (1= Be) I(Xi, HY 1Y, |SY, Ap = 0, B), = 0) (145)

where in the last inequality we used (138).
We next investigate each of the first three terms in (145)
separately. As a shorthand, we introduce the event

V& {A,=0,B, =1} (146)

D. Bound on I(Xk;Yk‘S’f,V)

Using the notation X = |Xj|e®* and introducing 1D
random variables {©} that are uniformly distributed and
independent of any other random variables, we bound the first
term as follows:

I(Xk; Yi[SE, V)
< I(Xp; Y, Hi Xk [SE, V) (147)
= I( X Hp X3SV, V) + I(Xi; Y |[He X5, ST, V) (148)
= I(Xp; | Hg ||| Xk |, Hy €% [SE, V)

+ I(Xp; Ze|Hp X5, SE,V) (149)
=0

= I(Xu; [|HLL ||| X5 |, Hj, €%, ©4]SE, V) (150)
= I(Xp; [|Hg ||| X5 |, Hy, (5490 0, ]8Y, V) (151
= I(X; [Hy ||| Xk, ©1[ST, V)

+ T (X H PO [ || X ], Ok, 85, V) (152)
— 1(X: [ Ll X0 €% S5, V)

+ h (g €O [ ||| X |, Ok, ST, V)

— b (Hy, €5 OR ||| H ||| Xy |, O, X, SE, V) (153)
< I(Xgs || Hg || X | €€ |S}f, V)

I (F (P00 |SE V)

— ha (He || Hi [, X5, ST, V) (154)

= I(Xp; | Hg ||| Xk €9%|SE, V) + ho (Hy 9% [SE, V)
— ho (Hg || HLi ||, X, ST, V). (155)

Here, in (153) we use that both |Hg ||| X%| and O can
be recovered from ||Hy|||Xy|e€*; and (154) follows from

conditioning that reduces entropy. We next apply a conditional
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version of Lemma 2 to the first term in (155) where we
substitute X = X, and T = ||Hy,||| Xy| €/©*:

I(Xs || Hy || X5 | €% [SF, V)
< —h(||H ||| Xk eiOr | Xk, sk, V) +logm + plogn
+1ogr(u, n) (1= ) E [log (IFLI [ X4 +)|V]

1
5 E [IHk)? [X[*[V] +% (156)

with free parameters p,7 > 0 and v > 0. We restrict the
choice of y further to 0 < p < 1. Note that (see Lemma 1)

h(|[H ||| X5 | €9 | Xy, SF, V)

= E[log |Xx*|V] + h(||Hg|| €€%| Xk, SE, V) (157)
= E[log | Xk |*|V] + log 27 + h(||Hy ||| Xy, SF, V)
+E[log [ Hy|[|V]. (158)
Moreover, we define
€k 2 sup {E[log(HH;@HQT2 +v)|V]
~ Eflog(|Hc %) V] | (159)

£ sup {E [log ([ Hol[*r? + v)| Ag = 0]

6 2
~ E[log(I[Ho|1*%)[ 40 = 0] }  (160)
such that
Bre€vk
= nggn{ﬁk E [log (| HLi|[** + v) |A), = 0, By, = 1]

— B E [log(IIH %) 4 = 0, B, = 1]} (161)
< sup {@c E [log (| Hy|[*r* + v)|Ax = 0, B, = 1]

- ﬁk E [10g(||HkH2T’2)|Ak- = O,Bk = 1]
+ (1 — Be) E [log(||Hg ||*r* + v)|Ax, = 0, By = 0]

— (1= By) E [log (| Hg||*r?) [ A = 0, By = o]}

(162)
— sup {E[log(I[H|1*r* + v)|4x = 0]
7’ngin
— E[log(|[Hx|?r%)| A = o}} (163)
—e, (164)

(where the last equality follows from stationarity), and such
that

(1 — ) E [log (I H | [Xx[* + v)[V]

= (1 — ) E[log (|| Hx|1* | X&[*) V]
+ (1 — p) E[log (1 H || | Xk |* +v) [V]
— (1= 1) E Dlog (I[H4]| [ Xx[*) V] (165)
(1= ) E [log (|| L[| [ X5 *) [V] + (1 = v (166)
(1 — ) Eflog [Hx|?|V]
+ (1= p) E[log | Xi*|V] + €

<
<

(167)
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where we use that ;4 < 1 and that conditional on )V we have
|Xk| Z 5min~
Plugging this all back into (155) now yields

I(Xk;Y5|SE, V)
< —log2 — h(|[H|||Xx, ST, V)

14
wlognﬂogr(u,n) (1 - ) E[log [H[2V]

— E [log | HL|[V]

— WE[log |Xu2[V] + ev + % E [|/EL |12 [ Xk [2[V] + %
+ hy (Hx €5 [SE, V)
= —log2 — E[log | Hy|||V] + plogn + logf(u, ;)
(1 - 1) E log [k 12V] — 1 E [log [ Xk2 V] + €1
+ % E [J[EL |12 [ Xk [2[V] + % + by (EL, €94 [SE, V)

— ho (Hg || HLk ||, X5, ST, V) (168)

— h(Hg| Xy, S5, V) + (2nk — 1) E[log [[Hg||[V] (169)
- —10g2+u10g77+10gf‘<u, :)

+ (nr — ) E [log | Hy||*|V] — nE [log | X |*|V]

+evk % E I/ |12 [ Xk [2[V] + %

+ hy(Hy €©%|ST, V

h(Hi| Xy, SE, V) (170)

where in (169) we have made use of Lemma 1 once more.

E. Bound on I(H}™'; Y| Xk, S5, V)

We bound the second term as follows:

I(Hllvilek’X]w SI{7 V)

< I(H}™' Y, Hy | X5, SE, V) (171)
= I(Hy ' Hy| Xk, S5, V)
+ I(H} Y| Hy, X3, ST, V) (172)
=0, see Fig. 5 in Appendix A
= h(Hg| Xk, S§, V) — h(Hy[HY ' X, SE V) (173)

= h(Hg| Xy, S§,V) — h(Hy[H{ ' ST, 4, =0)  (174)

where the last equality holds because conditional on H]fl
and S¥, the input X} is independent of Hj, (see Fig. 6 in
Appendix A).

F. Bound on I(Y;~};Y|Sk, A, =0)
The third term is bounded as follows:
I(YE"LYA[SE, 4y = 0)
=I(Y};Z}, Be; Yy |SY, A, = 0)
— I(Bi; Y| Y72}, SF, A = 0)
=I(By; Yi|SF, Ay = 0)

(175)

>0
+ B T(YFZ L Yi[ST, Ay = 0, B, = 1)
+ (1 - 5k) I(Yziiva‘Sf,Ak =0,B; = 0)

>0
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—H(By| Y}, S, Ar = 0)
+ H(By|YF_,.. ST, Ar = 0) (176)
>0
> B I(Y2L Yi|Sh, A =0,B, = 1)

H(By|Ar = 0) (177)
—ﬁkl(Y,’:—,i;YkIS’“ V) — Hy(5) (178)
=B I(Y;Z LZZ w3 Yi[ST,V)

= B (220 Yk Y2 S, V) — Ho(Br) (179)

< 62 (Emin,5)+Hy (Br)

> B (Y3~ s, Z3 15 Yk[ST, V) = 82(Emin, )

—2Hy(Br) (180)
= B I(Y3Z o Zi~ i Yk, Zi[ST, V)

— B I(Y L 2y Zi Y3, SE, V) — 6a(&mins )

< 03 (&mins k) +Ho (Br)

— 2 Hy(Br) (181)
> B I(Y ;L 25 Y0, Z |SE, V) — 6a2(Emin, )

— 63(Emins K) — 3Hb(/8k) (182)
= B T({HoXo}; o0, ZE 1 Hy Xy, Zig [SE, V)

— 62(Eminy K) — 63(£mm, k) — 3Hp(B) (183)
:ka({Hfo}e k— K,Zﬁ }wGZ »1w

H, Xy, Zi, Ok [S}, V)

762(§mma ) 53(§mma ) 3Hb(ﬂk) (184)

= B T({HeXp €4y 2y 08
H, X, 9%, Zy,, ©4|St, V)

_52(€mma ) 63(§mma )_SHb(Bk) (185)
> B I({H X, 9} H X, €9%|ST V)

_52(€mma ) 53(€m1na ) 3Hb(ﬂk) (186)
= B T({He|Xe| €935 Hyc Xk €9%[ST,V)

_62(€min7 )_ (fmma )_3Hb(5k)~ (187)

Here, (177) follows by dropping some nonnegative terms and
by conditioning that reduces entropy; the bounds in (180)
and (182) are derived in Appendix D with &2 (&min, k) and
93 (&min, k) defined there and shown to tend to 0 as &y, tends
to infinity; in (184) we add IID and uniformly distributed
random variables ©, that are independent of all other random
quantities; and in (186) we drop some arguments of the mutual
information functional.

For the first term in (187), we continue as follows:

B ({He| Xo| €9} K,Hk\ine'@%S’“ V)
= e T Pl (B )

VL] |X], FL €| SE, V) (188)
> I({H, €O}y 7) OS] Y) (189)
= By, ha (Hy €9+ [SK,V)
— By ha (Hk O |{F, e® Y] s’f,v)
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k—1

+ (1 — ﬂk) h)\ (I:Ik €i®k {I:If ei@e Pkt

Sk Ay =0,B) = 0) (190)
= ﬁk h)\ (I:Ik €i@k |S’f7 V)

— h>\ (I:I]~C €i®’c {I:Ig ei@g if:_;iﬁ, Slf7 Ak = 0, Bk)
S i o i k—1
+ (1= Be) ha (Hk O {Hpe'® ), —

Sk Ay =0,B) = 0) (191)
> By ha(Hy, €95 [SF, V)

— h>\ (I:Ik eigk {I:Ig ei@@ 5:_;7&, SZ_K,A]C = O)
2 i o i k—1
+ (1= Bk) ha (Hk‘?@k {Hye®},—

SE Ay =0,B), = 0). (192)

Here, in (189), we drop some arguments; and in (192), we
remove some arguments from the conditioning of the second
differential entropy term.

G. Combination of Three Bounds

We combine the three bounds (170), (174), and (192) in
(145) as follows:

I(M;Yy, Sk Y1, 8571, A = 0)
< —Bilog?2 + Brulogn + By 10gI‘<u, :)
+ Br(nr — p) Elog |[H*|V] — Bip E [log | Xk [*|V]
+ B+ 22 E[IELI? X2 V] + i
+ B ha (Hy €% |SE, V) — By h(Hy | X4, SE, V)
+ B h(Hy | Xk, S§, V) — B h(H,|H ', SF, A, = 0)
— By, ha (Hy, €©%|SE, V)

+ ha (ﬂk eOr | {H, ]e:;—m SHE PR 0)
or i or i@ k-
— (1 — ﬁk) h)\ (Hk e@k {Hg 661‘7 szlt—ﬁ’

S}, Ak = 0, B, = 0)

+ 02(&min, £) + 03(&mins &) + 3 Hp(Br) + Ho (Br)
+ (1 — Br) I(Xe, HY 5 Y4 [SE, Ap = 0, B, = 0). (193)

Note that the four underlined terms cancel, that

E[log | Xi|*|V] = E[log | Xx|*|Axr =0, By =1]  (194)
> log &2y (195)
and that
Ox E [log [ Hy[*|V]
= ﬁk E [log ||Hk||2|Ak = O,Bk = 1] (196)
= E[log || H,||*| A% = 0]
— (1 — Be) E[log | Hy|?|Ar = 0,B, = 0]. (197
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Hence, with (164), we get
I(M;Yy, Sk Y1, 851, 4 = 0)

< hy (I:Ik 1Ok {I:Ig e'©¢ IZ:_,;K, Sk Ay = O)
— Brlog2 +ng E [log HHk||2|Ak = 0]

- Bk h(Hk‘H]filv S]faAk = 0) + ﬂk 10gF<u7 :)

14
+ % E[IIHL|* | Xk|*|Ar = 0, B = 1] +ﬁk;

+ (B log n — E log [ FLx || A = 0]
+ (1 — Be) E[log |[Hy|]*|Ax = 0, By = 0]
— i log €2,

+ (1= By) <I(Xk,H’f‘1;Yk|S’f,Ak =0,B,=0)

. T iOk| r¥Y 01 kL
h (Hk e {Hee® },

SE Ay =0, By, = 0)

-meﬂ%nHwﬂAkszkzm)

+ 4 Hy(Br) + 62(&mins &) + 03(Emin, ) + €0 (198)
Next, we bound
(1 — Bx) E[log | H|[*|Ax = 0, By = 0]
< (1 - Bi) log E[|[Hy|*|Ax = 0,Bx =0]  (199)
< (1 ) log ELHI] A = O (200)
1 — Bk

= (1 = Bi) log E[|[Hy[*|Ax = 0]
— (1= B) log(1 — Br) (201)
< (1= Bx)log E[||H,[*|Ax = 0] + 71 (202)
< (1= Bx) log (2E [|H[*]) +e7* (203)

where (199) follows from Jensen’s inequality, where (200)
follows from Lemma 9, and where (203) can be derived from
Lemma 9 and (122) as follows:

1
B[ 1*Ar = 0] < — - E[IH*]  (204)
1
S{ 1 E[lIH.|] (205)
2
= 2E[||Hg[*]. (206)
Furthermore, using that conditional on A = 0 we have

|[Hg||?> < t and relying once more on Lemma 9 and (122),
we obtain

%E[HHW X, 2| Ay = 0, B, = 1]

1
< HE[IIHkH2 | X5 [*| Ak = 0] (207)
< % E[1X4 %) 4y = 0] (208)
t 1 )
< TTa E[1X%[] (209)
< 2 E[1Xx[?]. (210)
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Moreover, we bound

+ ng E [log | Hy||?| A = 0] — h(H,|H} ™", S}, A, = 0)

1 . . _
— B h(Hy[Hy ™, ST, Ay = 0) "1 (hA<Hk O (B ST K’Ak)
=—h(H |Hk71 ST, Ar = 0) —log 2 + ng E [log || Hy||?]
+ (1 - Be) h(H,[H{ ', S, 4, =0)  (211)

< —h(H,|H{ ', S}, Ay = 0)

- h(Hk|H’f17S’f,Ak))
+ (1 = Br) h(Hg|Ax, = 0).

(212) Qg i ie,1 k-1
Finally, the following bound is proven in Appendix E: 4 1)
k =
I(Xy, Hy ' Yi[ST, Ay = 0, By = 0) —log2 + ng E[log | Hy ||*|Ax = 1]
— h)\ (I:Ik eiek {I:IZ @iee ]Z:_]j:f;{?S]lC?Ak = OaBk = 0) 7 h(Hk|Hllc—1 Sllc Ak _ 1)) (215)
— g E [log [Hy||*| Ay, = 0, By = 0] '
2 SRR 'S SRS VR Lt .
« —ngh(Ho[HZL, 80 A= 0) + 4nR(n; +1) < T <h,\ (Hk RS : AT H) log 2
— hy (HO €O HL S Ay = o) + ng E[log |Hy||?] — h(H,|[H} 1, S’f))
16ngm"™® 2me E[HHOH ] 1 k-1 gk
_— + I(A; HyH7 ", S
+F(nR)(4nR—1) +4anog<1+ e 1- B 1— o (Ar; Hy|Hj )
2 % o i0k] fyr i@ kL
+ ng log 2€m‘“ [”HOH ] . (213) 1—ay (h/\ (er ' {ng ke Sk w
ngo? 11— B A 1)
k =
Hence, using all these bounds in (198), we obtain —log 2 + ng E[log ||HkH2|Ak =1]
I(M; Y, Se[Yy—t, st Ak =0) — h(H|A, = 1)) (216)
< (B O [ €T SE A =0) .
< h(Ho e | {H, e© log 2
“log2 + ng E [10g||HkH |Ak:O] _l—ak<A< o€ { c€ }e ) 0g
— h(H, [HY ' SY, A = 0) + (1 — B) log 2 + ng E [log |[Ho||?] — (HO‘HOO7S(1(X>)>
+ (1 = Bi) h(Hy| Ay = 0) + B 10gr<u, V) 1
n + Hb(ak)
+ ZE[XP) + 51 L
n g k77 + 1 aka h (I:IO €190 {I:Ig eieé}e_ S(lm 0= 1)
—
(A Lo — E flog 444 = 0] 1082 + e E [log [ Ho 2| 4y = 1]
+(]‘ 7/8k)10g(2E|:||Hk||2]) +671 7/6]6 Ingglm) _h(HO’AO — 1)’ (217)
+ (1 - ,Bk) <4nRh HO H:l —oo?AO =0 1 S i ~ i —1
( . ) ) < g (0 (o @] (e, 82 )
dng(ng + 1 16ngm"™® —log?2 + ng E[1 H. |12
+ e I'(nr)(4ng — 1)2 o " [Og ol ]
- (LS
— h)\ (Ho eleo H:cl,o, Sgoo’ Ao = 0))
E[|[Hol?] 2E[[Ho|?]
2re E[[|Ho|*] +2H ' + t
+ (1 = Bp)dnilog| 1+ =— 1
nR — B A (ﬂ ©0] (11, O S0 Ap=1
2 2 A 0 € £ € }22 —K? 0 —
+ (1 —Br)nrlog| 1+ 20 ELIHo|]
k)R 108 nRo? 11— By —log 2 + ng E[log |[Hol|?*| Ao = 1]
+4Hb(ﬁk)+52(£min7’€)+53(£min,/€)+€u- (214) —h(H()’AO = 1)’ (218)
We next bound the first four terms as follows:
Here, (215) rewrites the expression with respect to Ag; in
hA<Hk 'Ok {H LI - k ! k s Ak fO) —log2

(216) we drop terms in the conditioning of the first and the
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last differential entropy term; (217) follows from stationarity
plus adding some conditioning, from taking the absolute value,
and from dropping a nonnegative entropy term; and the last
inequality (218) we rely on (118), (121), oy, < %, and define

64(t,l’€)
E [||FLo|*]
t

1>

(oo s

—log 2 + ng E[log || Ho||?]

—00?

— h(Ho|HZ] sﬁw)zo} (219)

where .7 {statement} denotes the indicator function that takes
on the value one if the statement holds true and zero otherwise.
Note that limyeo 04(t, £) = 0.

Hence, using this in (214) and applying stationarity where
possible, we have

I(M; Yk, Se| Y ST A =0)
1 i oro i@, 1
< g (B oo L s )
—log2+nRrE [log ||H0H2]
- h(HOyH;O,SOOO)>

. 2Hb<E[||rtloﬂ> L 2E[Ho)]

t

h)\ (I:IO ei@o

(A, ei@z};zl_ﬁ’ S, Ay = 1)

— log 2 + ng E [log [|Ho||?| A¢ = 1]
— h(Ho|4p =1)
+ (1 —Br)log2 4 (1 — Bx) h(Ho|Ag = 0)
+ Bi 10gI‘<u, ”) + 2 Ex] + 82
n n n
+ M(ﬁk logn — E [log |[Hy|*| Ao = 0]

+ (1= Bi) log (2E [y |2]) + 7 — Brlog &2, )

+ (1= 5) <—4nRh(HoyH;o, S? o, Ao =0)

N dng(ng + 1) 16ngm™®
e I'(ng)(4ng — 1)2

H-L . S° . A _o)>

2re E[H0||2]>

+ (1= Br) 4n}2210g<1 +—

— h)\ (I:IO ei@o

ng 11— B
262, E[IHo|]
+ (1 - Br) nR10g<1 + ol 1B,
+4 Hb(ﬁk) + 02 (gminv KJ) + 53(€min; H) + €. (220)
We now define
1 n
N
B = —— D B (221)
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and note that 3, — (1—B4)log(1+const/(1—f;)) and Hy(-)
are concave such that by Jensen’s inequality

Y 2
: Z (lﬁk)4nﬁlog<1+2;6 E[”HOH })

n—=kK 1—
Pt R Br

E[||H,|2
< (1= Bu) 4n2 log (1 4 2me [0”]> (222)
ng 1-— ﬂn,fi

E[||H0||2]>

n 2
! Z (1 = Br)ng log (1 + 2€mi“2

n_nk:n—i-l nr o 1— Bk
262 E[|Ho|?
< (1= Bn,k) nr log (1 + niﬂ;r; 1[! ﬁOH ]) (223)
and
1 n
—— D Hu(Bk) < Ho(Bun)- (224)

k=r+1
Moreover, by adding some nonnegative terms and using the
average-power constraint (13),

n

Y E[XP] <2

n—kK n—kK
k=rk+1

1 n
=S CE[X] (25)
" k=1

n

< E.. (226)

n—e
Plugging (220) back into its corresponding summation from
(133) hence yields:

> I(M;Y, S| Y SE T Ay =0)
k=rk+1

1 Y i6 oy 0,11
< o U (Foe (o 2 st

—log 2 + ng E [log | Ho||?]

1

n—~kK

— h(H0|H:}>O,S(loo))

+2Hb<E[IIHo||2]> L 2E[IHo)P].

t t

Ry (ﬂo 0| {H, ei@;,};:liﬁjs(im/lo = 1)
—log 2 + ng E [log | Hol|*| 40 = 1]
— h(Ho| Ao = 1)‘
+ (1= Bnx)log2+ (1= Bnx) h(HolAg = 0)
+ ﬁn,nlogf‘(,u, l/> + i n Es + Bnw v
n nn—~kK n

+ u(ﬁm logn — E[log |[Ho|*| Ao = 0]
+(1—Bnr) log(2 E [||H0||2]) +e !
- ﬂn,m IOg gr%in)

+ (1= Buk) (—4nRh(HO‘HC1)O, S? ., 4p = 0)

4 4nR(nR + ].) 167LR7TnR
€ F(’I’LR)(4HR — 1)2
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— h)\ (I:IO €i®0

1,8% o, Ag = 0))

El|H
+ (1= Bux) 4nR log (1 + Lﬂ: [[ ;TJ!K] )

E [[Ho|?]
1- Bn,n
+4 Hb(ﬁn,n) + 52 (gmin; /f) + 53(£min; KJ) + €,
1 T
< (SN 9, 0
1= 64(t7 H) (h)\ (HO € {HZ € }szn’ Sfm)
—log 2+ ng Eflog [ Ho| %]

— h(Ho/HZL,, 8% ))

+2Hb<E[||I;I0||2]> | 2E[[Ho|?]

2 2
+ (1 = Bn.x) nrlog <1 + Sinin

RU2

(227)

t

. h)\ (I:IO €i®0

{I:Ig ei@z}z_:li S0, Ag = 1)
—log 2 + g E [log |Ho|[2| 4 = 1]
—MH@%:U‘

2t n
Jri
nn-—

{(1 — B)log2+ (1 — B) h(Hg|Ag = 0)

P Es + 52 (Smim H) + 53 (fminy H) + €y

+ sup
0<B<1

+ﬂlogf‘<,u, V) +BZ
n 7
+ p(B10g 7 — E [log || Ho||*| 49 = 0]
+(1-75) log(2 E [HH0||2]) +et
~ Blogél,)
— (1= B) 4ng h(Ho|HZL,,S°
LB 4nR(n; +1)

+(1-5)

oovAO = 0)

16ng7™r
F(TLR)(4RR — 1)2

— (1= B) I (o @ [H7L 8" 4, =0)
E||H
+ (1 - p) dng log (1 + QniRe M)
262, E[IHo|?
+(1—ﬂ)anog<1+ — [1_05 ])

+4 Hb(ﬂ)} (228)

where in the last step we take the supremum over 53, ,. € [0, 1].
Next, we plug (228) back into (133) and let n tend to
infinity:

RFB.C(ESHSk})

c(E0)

3515
ng E [||Ho|?] E[||Ho||?|Ao = 1] ¢E,
U TR 2
E[lH, |2
+ M I(HZL,,SZ1; Ho, So| 4o = 1)
1 T 00| Y O 1 0
T R
— log 2 + ng E [log |Ho||?]
—h(H0|H_}>O,SOOO)>
E [||H,||2 2E[||H,|2
+2Hb< [ ])  2E[HIR).
N (ﬂo ¢ |(H1, eiez};:l_ S° Ay = 1)
—log 2 + ng E [log [ Ho > 49 = 1]
— h(Ho|Ao = 1)‘
2UE,
! (é-minw‘i) +63(§min7/€) + €
+ sup {(1 —B)log2+ (1 — ) h(Hg|Ag = 0)
0<p<1
+Blogf‘(u,y> + v
n n
+ (B logn — E[log [ Ho|1*| 4o = 0]
+ (1= B)log(2E [||Ho[?]) + ¢!
_610g5i1n>
— (1= B)4ng h(Ho|HZL ,8° _, 4y = 0)
4
(1) mlim D)
16ngm™®
+(1-f)—2RT
= B) ) (i —1)2
— (1= B) hy(Ho e |HZL 8%, 4g = 0)
+ (1 — B) 4ng log (1 4 2me E[IHol] ]>
ng 1-0
262, E[lIHo|?]
+(1_6>RR10g<1+nR02 1-3
+ 4Hy(B) } (229)

We make the following choice for the free parameters u, 1, t,
and gmin:

14

e log E (239)

S

E, log? E,

nt =28 (231)

14
t 2 log? E, (232)
gmin £ V IOg 1Og Es (233)

for some fixed value v > 0, and for E; large enough such
that 4+ < 1. Note that then inside the supremum, the term
BlogT(u,v/n) grows like S loglog Eg, while one more term
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grows like (1 — ) logloglog E, and the rest is bounded from
above in E;. Hence, for any Eg larger than some threshold,
BlogT' (1, v/n) becomes the dominant term and the supremum
is therefore achieved for 5 = 1.

Note that the bound (229) holds for any system, hence also
for an optimal system. So we can use (229) to upper-bound
the asymptotic feedback capacity with causal side-information
at transmitter and receiver:

XFB,cﬁHk}HSk})
2 E]siTrglo{CFB,c(EsHSk}) -

— E[||Ho|?
<lim{Hb< I 20||]>
E too log” E
2 2 — 2
| e E[|[Ho|P’] 10g<1+E[|7|1H0 |40 = 1] E;log ES)
R

log log E } (234)

log? E; El[Ho|l?] o?
E [||FLo||?] 1
p o0 p-1 sl H,, Sl A = 1
IOgQES ( oo oo 0 O| 0 )
1

+ 1-— 54(10g2 E,, /{) .

(h \ (Ho €190

+ g E [log [Ho 2] — h(Ho[H"L,S° ))

{H e'@@}tz ) log 2

2E[[Ho|?]
log? E,
or i T -1
: hA(Hoee" {H, 00 ,H,A0=1)
—log2 + ng E [log [|Ho || 4o = 1]
_h(HOonzn‘
E[|[Ho|*] oll]
+ 2H, o E, +2v + §o( /Ioglog Eg, k
og
2
+ 0 (\/lo lo Eq,/-e>+el,+1o F< )
3\ V708708 $" \logE, E. 1o’ E,
v
+ o E. (log Es + 2loglog Es — logv)
v vloglog log E
— —— E[log |Hp||?|40 = 0] - —=>—2>22
g E. [log |[Ho||*| 4o = 0] log E,
2 v
+ + — loglog Eq 235
Elog? E;  elogE; 6108 } (235)
th(Hoe'eo {Hpe'@"}Z ) log 2
+ ng E [log || Ho ] *h(H0|H_w )
+3v+log(l—e)—logr+e, (236)
where we have used that [6, Appendix XI]
1'{11“(” ”2>11E}
im < lo ——— | — loglogE,
Estoo S log E’ Elog E 8108
=log(l—e7") —logw. (237)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 6, JUNE 2014

Note further that

lim{log(1 —e™")

-1 v =0.
lim 0g1/+31/+6} 0

(238)

Hence, by choosing « very large and v very small, we see that
xr.c({Hr H{Sk})
< hy (ﬂo €'©0 {I:Ig eie’f}zl ,SY ) —log 2
+ ng E [log [|Hol|*] — h(Ho[HZL,,8% ).

(239)

VII. AN UPPER BOUND ON THE FADING NUMBER WITH

FEEDBACK AND ACAUSAL SIDE-INFORMATION

This derivation is very similar to the one given in Sec-
tion VI. We will therefore only point out the main differences
and omit many details.

We start with (108):

RFB,aC(ES‘{Sk})
1
< —-I(M;Y7?,S?
= n ( bl 1> 1)+

+Pr[M # N Repac(E|{Sk}) + =

log 2

(240)
log 2

1
= —I(M;Y7Sy) +

n

+Pr[M # M| Repac(Es|{Si}) + (241)

ZI M;Y YL ST)
n kK

> I(M;Y,[YE ST
k=rx+1

+ B2 4 B(M £ W) R (Bl (S +

1
+ =

(242)

Lemma 10 is adapted as follows.
Lemma 11: In the case of acausal side-information, Lem-
ma 10 reads

I(M; Y)Yy, sn)
= ”Rlog(l + - E[IHol] ’;) + I(HF S HE|SD).
(243)

Proof: Omitted. [ ]
Applied to the first sum in (242) this yields

fZI M;Y,[YEL ST
k=1

<z Zanog(1+E[H()||] >

k=1

1 c— n
+ ’;h(HMS?ﬁ) - Zh(Hk!H’f LST) 44)

<ng log(

1 klqn
- ;h(Hljsl)

s Lepme !ty 5) + h(H)

k=1

(245)
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such that
RFB,ac (Es ‘ {Sk})

K 1 1 < Ej
< R log <1 + . E[HH0||2] p ; o2 ) + — h(Ho)
1 ol lo g2 ~
- = h(H1 ST) + —= + Pr[M # M| Repac(Es|{Sk})
> I(M;Yk|Y’f‘1,S§‘).
k=r+1

+z+l
n n

(246)

The expression (133) is then adapted as follows:
RFB,HC(ES‘{S]C})

K 1 1 <~ Ey
< nanog<1+ n—RE[HHoHQ] EZ o2 ) + - h(Ho)

k=1

1 log 2 N
- h(H[S}) + % +Pr[M # M) Rep ac(Es|{Sk})

E[||[Hol?
+€"+Hb< [l 0||]>
n t

2
L E I )] 1og(1+

E [I[ELo|* 40 = 1] tEs>

; EH?] o>
E[||Ho?
o S s s r g = 1)
n—k 1 zn: I(MY ’Yk—l S” A —O)
n n—=k LRI EL 91, Ak = U
k=kr+1

(247)

The derivation of the bound on [(M; Yk|Y’f_1, ST, A =
O) is completely analogous to (134)—(228). After having n
tending to infinity, we end up with

RFB,aC(EsHSk})

2
. Hb<E[||Ij0|| ])
2
" E (Il 10g<1+

E [|IHo||?]
t

1 .
1—54(75,&)( A( 0

—log2+nRE[log||H0H2}
—h(HOyH;,S“oo)>
E[|Hyl? 2E[||H,||?
+2Hb< [||to||]>+ [ntouy

{H o},

Q

E [ 1240 = 1] £,
ENEPT o2

+ T(HZl,8>, i Ho|4o =1)

7007

{I:IE ei@g };:1—57

Siﬁ)

- |hy (I:IO ¢'©0

—H7AO - 1)
—log2—|—nRE[log||H0H2‘A0 = 1]

—MH@%:U‘

5 (gmim H) + 53 (gmim K/) + €,
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+ sup {(1 —B)log2+ (1 — ) h(Ho|Ao = 0)
0<p<1
+BlogF(u7V) +8%
7 n
+ p(Blog — Elog [ Ho|[*[ 4o = 0]
+ (1~ 8)log (2E[|[Ho|*]) + e
~ flog €2, )
— (1= B)4dng h(Ho[HZL,, 8, A9 = 0)
(- p) 4nR(n; +1)
16ngm™R
U0 ) (g — 12
—(1—B)hy (Ho ¢®|H-L 80 A= o)
2me E[|Ho?]
+(1—6)4 1g<1+nR 1[3>
262, E[IHoll
+(1-8) anog<1+ i [1 *06 }>
+4 Hb(ﬁ)} (248)

where Sg(fmin, K), Sg(fmin, k), and 54 (t, k) are correspondingly
adapted versions of 02 (&min, £), 03(Emin, £), and 04(t, k), re-
spectively.

Before we conclude the proof in the same manner as in
(234)—(239) using the same choice of the free parameters as
given in (230)—(233), we point out that by an argument based
on the tool of Appendix A, one can show that

o (e B 0% )5
= (ﬂo ¢ | {H, ei@‘}z_:l_ﬁ,sﬂﬁ) (249)

and
h(Ho[HZL,, 8%, ) = h(Ho[HZ ., 8% ).  (250)

Hence, we end up with the following upper bound on the
fading number with feedback and acausal side-information at
the transmitter:

XrB.ac ({He }{Sk})
< hx (ﬂo €90 {I:Ig ei@’f}(: 00780 ) —log 2
+ ng E [log | Hol|?] — h(Ho[HZL,,8% ).

(251)

VIII. UPPER BOUNDS ON THE PRELOG WITH FEEDBACK

In this section, we focus on a SISO nonregular Gaussian
fading process { Hy } with {Hy, — d} being a zero-mean, unit-
variance, stationary, circularly symmetric, Gaussian process of
arbitrary spectral distribution function F(A), =3 < A < £, and
with d € C denoting the spectral component. Again we allow
a noiseless, but delayed feedback link from the receiver back
to the transmitter. As input constraint we only consider the
peak-power constraint (14).
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We start as in Section VI-C with Fano’s inequality:

1 log 2
RIB(E) < —I(M;¥]") + =5

+Pr[M £ M RB(E)+ = 252)
= LS iy + 82
n n
k=1
+Pr[M # M RB(E) + . (253)
Next we bound each term in the sum separately:
I(M; Y| YF)
< I(M,XP; V3| YF ) (254)
= I(XF Ve |YP 1) + I(M; Y3 | Y, XF) (255)
=0

= I(X}; Y5 |[YF ) (256)
< I(XF YL Y) (257)
= I(Xi; Vi) + T(XT 1 YF V3| X (258)

where (256) can be shown using the tool from Appendix A
(see Fig. 9). The second term in (258) is bounded as follows:

I(XE LY Ve Xy)

< I(Xy N Y Y, Hi | Xy) (259)
= I(X{ L YP Y Hy X
+ I(XE YN Y He, X5 (260)
=0
=I(X7 1Y Hye | Xa) (261)
= h(Hy| X)) — h(Hp Y], XF) (262)
= h(Hg|Xi) = Exp [0 (Hi|Y{ ™' A{Xe = 20}j_,)] (263)
= h(Hy|Xy) — Exp [h(Hi[{Howe + Ze}y=))] - (264)
< h(H, inf  h(H,|{H Zokl 265
B A
0=1,....k—1
7 k—1
=h(Hy)— inf  h| Hy {Hg—ke} (266)
Igi‘ze\%ﬁ Ze ) p—1

- ZZ k—1
— h(Hy) h(Hk { JET}M) (267)
_I<{Hg+ Zt }kl,Hk> (268)
\/E (=1
< I<{ jé}:_im Hk> (269)
~log (270)

€gred (%j)
Note that in (264) we use the fact that conditional on the past
outputs Ylkfl, the current fading Hj, is independent of the
inputs X¥. In (265), we bound by dropping some conditioning
argument and by replacing an expectation by an infimum; and
(267) holds because the infimum is achieved for z, = /E
(and an arbitrary phase since Z; is circularly symmetric).
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In (270), Epred( 2) denotes the noisy prediction error as
described in [7, Equation (11)]: When predicting H; based
on the noisy observations

Ho+W_ 1, H ot W o, H 5+ W_s,... (271

where {W},} is a sequence of random variables that are IID ~
Nc(0,6%), an optimal predictor will achieve a mean-squared
error

€prea(0?) = exp < / log(F'(A) +6°) dz\) -8 (272

Hence, we have

log 2
R (E,) ZI (X3 Vi) + log ———e + —2
k: 1 pred(E ) n

+Pr[M # M| RE(E,) + %" (273)

It only remains to show that the first term grows like log log E.
This basically follows from the upper bound given in Sec-
tion VI. Unfortunately, we need to be careful with the order
of limits. So, to avoid any hand-waving arguments, we derive
a rough bound showing a double-logarithmic growth (where
we not need to worry about the correct second-order terms).

Similarly to Section VI-C, we introduce an indicator random
variable By,

. Se
0 otherwise
with 3, £ Pr[B}, = 1], and obtain
I(Xk,Yk) SI(Xk,Bk;Yk) (275)
< Hyp(Br) + B I(Xk; Yi|Br = 1)
+ (1= Br) I(Xg; Yi|Br = 0). (277)
The last term we bound as follows:
I(Xk; Yk‘Bk = O)
= h(Yx|Br = 0) — h(Yx| Xy, Br = 0) (278)
< log(we( [\Hk| ‘Bk = O] Sin O ))
— h(Yy| Xy, H, X, B, = 0) (279)
=log(mec?)
2A
:log<1+E[|Hk2|Bk :o];;) (280)
H,
<log(1+ U eP] G (281)
— B o2

where the last inequality follows from Lemma 9.

To bound the second term in (277), we now rely on a
conditional version of Lemma 2 with X = X, and T = Y},
and with the choice v =0 and p < 1:

I(Xk;yk|Bk = ].)
< —h(Yy|Xg, By = 1) +log 7 + plogn + log I'(w)
1
+ (1 — p) Eflog |Yi[?| B = 1] + ; E[|Y%l?|Be =1]
(282)
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— _Ex, [1og(7re(E [|He|2| X5, = 21, By = 1] X4]* + 0—2))

e
+1log 7 + plogn + log I'(11)
+ (1 — p) Elog|H Xy, + Zi[*| By, = 1]
1
o E[|He Xk + Zi|?|Be = 1] (289
2 02
= —Ex, [log(E“H}J ’Xk = xy, By = 1} + |Xk2>
>0
b

— 1 —Elog|Xy|?| By = 1] + plogn + log I'(1)
+ (1 — p) E[log | Xy|?*| By = 1]

2
+(1M)Ellog B =1

Zy,
H, + 2k
k+Xk

2
o
L ENHPIXP B = 1] + 5 2859
o2
<-1- log(2> + plogn +log I'(p)
min
— pE [log I Xel?| B = 1]
+(1— )logE[|Hk|2 1Z:° ’“‘ By = 1}
1 m|n2
—E[|Hk?*|Br = 1] Es+ — (285)
77 n
< —1—logo? + plogn +logT(p) + (1 — p)log €2,
Ell?] o\ . EE[H]
+Q-plog| ——+ 7 | + —F——
( ) < ﬁk I%in nﬁk
2
L7 (286)

n
Here, (282) follows from Lemma 2; in (285), we use Jensen’s
inequality and the fact that conditional on By = 1, we have
2. < |Xk|? < E; and in (286), we again use |Xk|2 > ¢2
(conditional on By = 1) and we apply Lemma 9.
Hence, from (277), (281), and (286), and taking the supre-

mum over (i, we finally obtain

min

5 — “HO‘] Smin
o < g -1+ S

+Hy(B) — B — Bloga® + Bulogn
+ BlogI'(p) 4+ B(1 — ) log &xin
E H 2 2

+ 81— p) log<['ﬂ°' ] +é)
2 2

| BE[P] +50}

n n

(287)
Note that (due to stationarity) this expression does not depend

on k or n anymore. So, plugging this back into (273) and
letting n tend to infinity, we obtain

E | | min
R§§(E)<0§%p<>l{( 5)1og<1+£°6] 02>
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+Hy(B) — B — Blogo® + Bulogn
+ BlogT'(u) + B(1 — p) log &
2 2
+ B(1 = p) log<E[|go] + 02>
2 2
| EE[lHoP] +ﬁa}

n n
1
+log EIEaY (288)
pred ?)
Choosing

A 1
= 289
Iz Tog E. (289)
n £ Elog E (290)
gmin £ V IOg 1Og Es (291)

and using the same argument as in Section VI-G, we see that
for Eg large enough, the supremum is achieved for § = 1.

Hence,
R (Es)
loglog E 1
§—1—10g02+1+%+10gF e
log E; log E;

+<1—

1
logloglog E

+log (E (o)

+ o
log log E;

E[|Ho|? 2
[ Hol’] A B 08 o (292)
log E; E log E; pred( r )
1
= log log Es + loglog log Es + O(1) + log = (=) (293)

pred ( E )

Here, O(1) expresses some unspecified terms that are bounded
in Eg, and we used that

logF< ! ) = loglog Es + o(1) (294)
log E;

where o(1) represent terms that tend to zero as Eg tends to
infinity. Note that this upper bound holds for any system, i.e.,
it also holds for a capacity-achieving system. Hence, we have
succeeded in deriving a bound similar to [7, Equation (48)]
(it contains an additional term loglog log E). Note that under
the assumption that

m €§red (52)

= 295
5210 02 o0 (295)
we have
log ———— +0(1) = log ! +0(1) (296)
o -
gred(%z) gred(%Q) + %?

(compare with [7, Equation (54)]).

Next, we will derive an upper bound that is tight for very
small errors when predicting the actual fading level from noisy
observations of its past. To that end note that CPy(Es) is
always upper-bounded by the achievable rate in the case when
both receiver and transmitter have perfect knowledge about
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Fig. 2. The causality graph of the causal-order expansion given in (303).

the actual fading realization. In such a situation the channel
appears memoryless and therefore feedback does not increase
capacity. Note that since a peak-power constraint is in effect,
there is no water-filling possible, but in an optimal scheme, the
transmitter will transmit always with highest allowed power
E;. Thus

CPR (Es) < Resiers(Es) (297)
. 2
<E [bg (1 + Ef’“'ﬂ (298)
g
<1 ESEUHkP]
<log| 14+ —F—+ (299)
g
2 Es
=log( 1+ (|d| +1)§ (300)
Es
= log — + log(|d]* +1) +0(1)  (301)

where in (298) we upper-bound further by allowing Gaussian
inputs (that are not peak-limited). The bound (301) is identical
to [7, Equation (49)].

Furthermore note that any lower bound on the capacity
without feedback trivially also is a lower bound on the capacity
with feedback, i.e., the lower bounds given in [7, Section VI]
continue to hold in our context. Hence, we can now easily
adapt the derivations of [7, Section VIII] to the situation with
noiseless feedback, such that the results given in [7] also hold
in the case with noiseless feedback.

APPENDIX A
INDEPENDENCE AND CAUSALITY

In [11], [12], James L. Massey introduces a way of graphi-
cally determining independence of random variables based on
causal interpretations. A causal interpretation is an ordered

list of random variables, where the choice of a specific order
is based on the causality of the system. Loosely speaking,
we like to think of some random variables being generated
“first” and some “later based on the first.” Note that a priori
every ordered list is a valid causal interpretation, but some
choices will be more useful than others keeping in mind the
engineering understanding of causality.
In our case of the random variables depicted in Fig. 1

(M, X7, Y{ Hi, Z}, ST, F}) (302)
we choose the following causal interpretation:
(M,Zy,...,Zx,S1,H;,S9, Hy, ..., Sy, Hy,
FlaX17Y17F27X2aY27"'7Fk?XkaYk)' (303)

For some given sets A, B, and C of random variables, we
now would like to know whether A is independent of 5 when
conditioned on C. In order to answer this question, we make
use of the “Markov structure” of the random variables given
by the causal interpretation of the system. For example, for
(303), we think of

o M being generated independently;
e Z; being generated independently;

e Z; being generated independently;

e S; being generated independently;

o H; being generated based on Sy;

e So being generated based on Sy;

« H, being generated based on H;, S?;

e Sj being generated based on S’f_l;
o H; being generated based on H’f_l, S¥;
o F; being generated independently;
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k1

Fig. 3. The causally relevant subgraph of (303) showing the independence
of M and S;, when conditioned on (Y'ffl7 S’ffl).

o X being generated based on M, F;,S;
¢ Y being generated based on X1, H;,Z;
o F5 being generated based on Y1, Sy;

o X5 being generated based on M, Fy, So;
e Y, being generated based on Xo, Hy, Zs;

o F) being generated based on Y*~! Sk=1;
o X} being generated based on M, Fy,Sy; and
e Y being generated based on Xy, Hy, Zy.

Massey calls this a causal-order expansion of (302). It can
easily be depicted graphically in a causality graph, which is
a directed graph with an edge from vertex V; to V; if, and
only if, the generation of Vj is directly based on V. For the
example (303) the corresponding graph is shown in Fig. 2.

In order to prove the independence of A and B when
conditioned on C, we then consider the subgraph of Fig. 2
that is causally relevant to AU B UC, i.e., we consider only
nodes (and the corresponding edges stemming from them) that
are either member of AUBUC or causally prior to AUBUC.
Then we delete all edges leaving any component of C. If now
all components of A are unconnected (when the edges are
considered without direction) to the components of B, the
conditional independence is proven. Note that this graphical
proof only constitutes a sufficient condition for independence,
i.e., if the proof fails, then this does not imply that A and B
must be conditionally dependent conditional on C.

In Figs. 3-13, several independence claims are proven that
are used in this paper and that are based on the causal
interpretation (303).

APPENDIX B
PROOF OF LEMMA 8

We derive the following bound:

.r7k—1 k+k k+k k+k k—1
I(ka Zk—m Zk+1 ’Yk—m Sk—m Xk—rc)

< I( Xy ZPtr[Yite site xpml) (304)
= h(Zy Yt S XET))
— h(ZE Y S X ) (305)
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Fig. 4. The causally relevant subgraph of (303) showing the independence
of (M,Ylf_l) and Y when conditioned on (X;€7 H’f_l, S]f)
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K/
B
e

k1 fk

S
—
3

Fig. 5. The causally relevant subgraph of (303) showing the independence
of Yy, and H’f71 when conditioned on (Xk, H,, S’f)

< A(ZT5) = h(ZEE YT SET XD (306)
h

= h(Z™7)
—h (zgj:

< h(Z}7)

7 k+k
{Hg + XZ} St X,’jj:) (307)
L) p=k—x

Z k+k
{He + f} ﬁﬁtﬁ)
Le ) g=k—x

(308)

k+k
Z
{HH- é} ,Shtr
Tmin ) g=f—x

(309)

— inf
e |T0]|2>Tmin
Y4

k+k
h (Zk—n
=k—FK,...,k+kK

() - h(zm

k+k
Z
=7 Z’,jf:;{H¢+ d } ,s’gtg) (310)
Tmin J p=k—s

k+r k+r
VA V4
L
Tmin ) p—k—s Tmin J g=f—
Z, " Z, "
G {2
LTmin ) p— 4 Lmin ) p= 4

sg) — h(HE|S",) (313)

sZ*’;) (311)

sm) (312)

(314)
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Fig. 6. The causally relevant subgraph of (303) showing the independence
of X and H;, when conditioned on (Hlf_l7 S]f)

m

zkl

Fig. 7. The causally relevant subgraph of (303) showmg the independence
of S;, and M when conditioned on (Y k=1 , X k=1 S - )

Here (304) follows from adding Zj; to the arguments of
the mutual information; (306) follows from conditioning that
reduces entropy; in (308) we replace the expectation over
X ]ff: by a corresponding minimization; for (309) we note
that the minimum is achieved for x; = x;,; and (312) follows
from stationarity.

From [6, Lemma 6.11], [15, Lemma A.19] we conclude that

the expression
Z K
h({Hz + = } s* K)
LTmin ) p—_,

converges monotonically in xp;, to h(H’i K|S’i K).

(315)

APPENDIX C
PROOF OF LEMMA 10

By the chain rule, we have
I(M; Yy, Sk Y1, SE7Y) = I(M; S [Y—, 87
+I(M; Y| YT, 8h) 316)
where for the first term we obtain
I(M;S,|Yyt s
< I(M, X758, Yy, si )
= I(X774 8,y si )

(317)
(318)
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Fig. 8. The causally relevant subgraph of (303) showing the independence
of Sy and (Xffl,YIffl) when conditioned on (Hlffl,S’ffl).

zk1
ki oy >k
fk1 fk

Fig. 9. The causally relevant subgraph of (303) showing the independence
of Y and M when conditioned on (Ylf_l7 X{“, S’f)

= I(X77H Yl sih) — I(Yi58k[st™) (319)

>0
< I(XPL Yy L HPTL S S (320)
= I(Hy ' S[St)
+ (XY s =YL sE (321)
= I(Hy 5 S|st). (322)

Here (317) and (320) follow from adding an additional argu-

ment to the mutual information functional, and (318) and (322)

are proven in Appendix A (see Figs. 7 and 8, respectively).
We bound the second term in (316) as follows:

I(M;Y,[YF',SY)

_h(Yk\Y’“ L SY) — h(Yk|YET, S, M) (323)
h(Y,| YT SY) — h(Ye|YT!, XF,SF, M) (324)
:h(Yk\Yffl,sk) h(Y,| YT XT,8F) (325)
=I(XF; Y, Yy, sh) (326)
= I(XF; Y| Yy, ST, FY) (327)
=I(X}, Y7 'Y, SE FY) — 1(Y 1 Yk [SE FY) (328)
< I(XT, Y7L HYL Y| SE F (329)

=I(Xy, Hf 71 Y [SE,FY)
+ I(XT LY Y| X, HE L ST FY) (330)
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Fig. 10. The causally relevant subgraph of (303) showing the independence
of Y, and (Xf_l,Y’f_l) when conditioned on (Xk,Hlf_l, S’f,F]f).
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Fig. 11. The causally relevant subgraph of (303) showing the independence
of X} and Hy when conditioned on (H’ffl, S’f, F’f)

= I(X), Hy 'Y, [SE FY) (331)
< I(Xy, HY 'Y, Hy|SY FY) (332)
— I(H} Y H ST FY) + 1(X0 Hy [HE SE FY)
+I(Xk§Yk’HkvsllcaF’1€)
+ I(H} 5 Y, [Hy, X, SYFY) (333)
= I(Hy ' Hy|SY FY) + I(Xy; Yi|Hy, ST F)  (334)

where in (324) equality holds because XF is a function of
the message M, the feedback (Y*#~! S¥~') and the side-
information Sj; where in (327) we introduce the feedback
Ff £ (Y771, 8f71); and where (325), (331), and (334)
are proven in Appendix A (see Figs. 9, 10, 11, and 12,
respectively).
Combining (334), and (322), and (316) now yields
I(M; Yk, Se|Yi! 877
< I(HF7Y S S + I(Hy ' Hy |SFFY)

+ I(Xp; Yy |Hg, ST, FY) (335)

where we continue to bound the first two terms as follows:
T(HJY 8|S + I(Hy ' Hy |SF,FY)
= I(H} 7188V + h(H,|SY, FY)

— h(H,|H ', SE,FY) (336)
< I(H{ ™15 8,[ST1) + h(H,|SF)

— h(H, [H{ ', ST, FY) (337)
= I(H] ™} Sk[S777) + h(H,[ST)

— h(H,|[H{ ", SY) (338)

3523

i
7/V

hkl1 hk

Fig. 12. The causally relevant subgraph of (303) showing the independence
of Y, and H’f71 when conditioned on (Xk,Hk, S’f,F’f).

Fig. 13. The causally relevant subgraph of (303) showing the independence
of Hy and F’f when conditioned on (Hlffl, S’f)

= I(Hy 5 S|St) + 1(Hf 1 Hi[S)  (339)
= I(H{ " Hy, Si[ST) (340)
< I(H{~', Sy Hy, Sy) (341)
where (338) is proven in Appendix A (see Fig. 13).
The third term in (335) is bounded as follows:
I(Xk; Yy |[Hy, ST FY)
= h(Y|Hy, S}, FY) — h(Yy| Xe, He, ST, FY)  (342)
= h(Y|Hy, ST, F}) — h(Zy) (343)
<E [ sup h(HkX + Z]€|H]C = hk)
X: E[|X[?]<Eg
— h(Zy) (344)
=E [log((ﬁe)"“ det (HkHLEk + 0'2|))]
— ng log (7re02) (345)
.
<E|log]] (ynga ’Ex + 0—2) ~ nglogo? (346)
L (=1
el iilo 14 (B0 B (347)
* g =1 ° fo
[ 1 5 Ek
< E|nrlog| 1+ — |[|[Hg| — (348)
L nRr g
1 o1 Ex
<ngplog({1+—E [”HkH ] — |- (349)
nr g
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Here, in (344) we take the supremum over all input distri-
butions with given second moment Ej, which is achieved
by a Gaussian distribution; (346) follows from Hadamard’s
inequality [22]; and (348) and (349) follow from Jensen’s
inequality. Since E [||Hy||?] = E[|[Hol?], this completes the
proof.

APPENDIX D
DERIVATION OF 82(&min, &) AND 5 (Emin, K)

We first show that
B I(Zy~ s YR[Y 2L, SE, V) < 6a(6min, ) + Hu(Br) (350)
where

lim  J2(&min, k) = 0.

351
EminToo ( )

To that goal, we bound as follows:

B 1(ZyZ 3 Y| Y2, ST V)
= B h(Z | Y3— 5, ST, V) = B h(Z3 2| Yi_ ST, V)
(352)
< B h(Zy 1 |V)
— B h(ZEZEYF . XF_, Zp, HY "1, 88 V)  (353)
= B M(Zy | V) — BrBxp_ [M(Z32i] Yio s
{Xo = 20} Zn, HYT"7, ST, V)] (354)

= B h(ZiZ,|V)
Zs k—1
k—1
— BrExr [h (Zkﬁ {He + ‘XZ}Z—ICN’H]“

H "1 sk, v) (355)
< B M(ZiZ|V)
7 k—1
—Br  inf h(ZZ_t {Hz + ”} , Hy,
Tt |Te|>Emin Tl ) p—p_k
l=k—k,....k
H "1 sk, v) (356)

7 k—1
S
gmin (=k—k

H;, HY~"! sk v) (357)

'

(358)

_ G n(ZE ) - 5 h(zz:,a

L
= B I<ZZ_,1€; {Hz + £ Z } JH HY <71 Sy
min J gk

7, 15!
< B I(ZZ:i; {Hz + . }g . JH, HE R

St

AkO,Bk1>
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VA k—1
+ (- By I(z’;i; {Hg 4+ Ze }

gmin (=k—k

, Hg,

k—rk—1 k
Hl ’Sl

Ay =0,By = o) (359)

VA k—1
= I(Z‘,:-,i; {Hg +3 . }Z JH,
min —k—k

k—rk—1 k
Hl ’Sl

VA k—1
< I(Z’,:‘i; {ng . }Z JH,
min —k—k

k—rk—1 Qk
H1 " aslaBk

Ay =0, Bk> (360)

Ay = O) (361)

Zg k—1
= I(le—i; {H@ + é_ ) }Z 7Hk;,H'If_K‘_17
min ) g—f—x

Ak:())
k—1
Z
{He—F @} JH,
fmin (=k—k

HY 1 8k Ay = o) (362)

7. k—1
< I(ZZ‘;; {Hg + }
gmin l=k—k

St

s

+1 (zg—;; By

k—r—1
7HkaH1 9

Ay = 0> + H(By|A), = 0) (363)

) e ),
=1 ; Hf+ aH07
({ gmin {=—k gmin (=—k

HZ;7 0,824 = 0> + Hp(Br) (364)
1 _1
< lim [ {ZZ} ;{He+ Zé} » Ho,
Jtoo &min Y/ — &min Y/ —
H:?_lv Sg] AO - 0> + Hb(ﬁk) (365)

H07

7, 1~ 7, -
= lim I { Z} ;{Hg+ Z}
jteo &min y/— Emin y/—

H75 1, 8%, A= 0) +Hy(Br)  (366)

-1
=limh {HH— Ze}
Jtoo &min Y

—h(HZ}|Ho, HZ ', 8% ), Ag = 0) + Ho(Br)
£ 65 (&mins k) + Ho(Br).
Here, in (353) we add and remove conditioning random

variables to differential entropy; (355) holds because condi-
tional on (Yk’in, H’f_“_l) the input is independent of ZZ:i;

H07H:;‘€_17 SO—J7 AO = O)

(367)
(368)
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(359) follows by adding a nonnegative term; (361) follows
by moving By from the conditioning argument to a main
argument of the mutual information; in (363) we drop any
negative term and use conditioning that reduces entropy; in the
subsequent equality (364) we use stationarity; then in (365) we
add more arguments; and (366) follows from the independence
of {Hk, Sk} and {Zk}
Note that (351) holds because

Z —1
lim lim A {Hg + }
fminToo ]TOO fmm {=—k

-1
=lim lim A { Ze }
100 Emintoo Emin J o=,

Ho, HZH1,8% 4 = o)

—k—1
HOaHfj ’

S0, Ay = o) (369)

= l_iTmh( T [Ho, HZ5 1, 8%, A = 0) (370)
JToo
= h(HZ,|Ho, HZ5 1,8, 49 = 0). (371)

Here, the exchange of the limits in (369) follows from [23,
Theorem 7.11] (note that the differential entropy term is mono-
tonically decreasing in j and bounded, i.e., it is uniformly
converging), and (370) follows from a conditional version of
[6, Lemma 6.11].

In a quite similar fashion, we next show that

Be 1Y}, 2= 2| Y, SE, V)

< 53(£mma ) + Hb(ﬁk) (372)
where
lim 03(&min, &) = 0. 373
(m 3(§min, K1) = (373)
We have

6k I(Y]]: ,1Q7Zk; H;Zk|kaslav)
= B (2| Y&, ST, V) — B (21| Y. 2} L, SE, V)

(374)
< Br M(Zy|V)
— B M(Ze| Y, Xi_ o ZiZ ) HY P ST V) (375)
= B h(Zg|V)
— BeExp [P(Za| Vi o AXe = 20} Zi s
H 1 8k V)] (376)

= Br MZy|V)
—BeExp [h (zk

H;~ mHk+ 2 Hk " Sllcvv)]
377)
< Br hW(Zy|V)

— Br

inf h (Z k
xp: |”£z [>&min
l=k— k

.....

WZi V) — B h(zk

7 )
Hj, + z’“,H’fRS’;,V) (378)
k

Z;
H, + —
gmln

’)

JHM1 sk ) (379)

= Bk I(ZlmHk-i- ,HM1 gk (380)

gmm
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Zy, k-1 gk
<Br | Zy;Hy + JHY ™, SY|Ar=0,Br =1
min
B Zi toh-1 qk|g _
+(1—Bk)I|Zy;H + — ,HY ", ST|A; =0,
gmm
By = O) (381)
Zi txk-1 k
=7 Zk;Hk—Fi,Hl 781 AkZO,Bk (382)
gmin
Z
< I(zk;Hk + 5—?,H’f‘1, ST, Bi|Ay = 0) (383)
min
Z
< I<Zk;Hic + %7 H{ ™', SF| A, = 0) +Ho(Bk)  (384)
Z Z
N I<£m(1)n ’ HO * gm?n H_ ll€+17 Sngrl AO B O)
+Hy (B) (385)
< limI(ZO;HO + 2o H™!, 8% |4 = 0)
jToo min gmin J
+ Hy (B) (386)
. Zg ZO 1 0 )
= lim J H, + 8% Ap=0
J#I;lo (Smm 0 gmin J 0
+ Hy(8k) (387)
Zg
= hm h(Ho + Emm H_;, SQJ,AO = 0)
— h(Ho|HZL,,8% ., 4o = 0) + Hyp(Bk) (388)
£ 03(&mins £) + Ho (Br).- (389)
Analogously to (369)—(371), one argues that
Z
ghrTn hmh<H0 + 5 CIHZL S, A = o)
minT00 jToo min
=h(Ho|H-L,,8% . 40 =0). (390)
APPENDIX E
DERIVATION OF BOUND (213)
Similarly to (331)—(334), we bound as follows:
I(Xy, HY 5 Y, [ST, Ap = 0, B, = 0)
< I(Xy, HY 'Y, Hy|SY, Ak = 0, By = 0) (391)
= I(Hy ' Hy|SY, A, = 0, B, = 0)
+ I (X Hy [HY T SE, A), = 0, B, = 0)
+ 1(Xp; Yy |Hy, ST, A = 0, Br = 0)
+ I(H} Y [H, X5, ST, A = 0, B, = 0)  (392)
= I(H} ' H S}, A = 0, B, = 0)
+ I(Xp; Yy|Hy, SF, Ay = 0, B, = 0) (393)

where the last equality can be seen from Appendix A (see
Figs. 5 and 6). Moreover, similarly to (342)—(349) we bound
the second term in (393) as follows:

I(Xk; Y3 |Hy, ST, A = 0, By = 0)

= h(Yy|Hy, S}, A = 0, By =0)
— h(Yy| Xk, Hy, S, Ay = 0, B, = 0) (394)
= h(Yy|Hy, SY, A, = 0, B, = 0) — h(Zy,) (395)
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< E[ sup h(Hip X + Z|Hy, = hy, Ay, =0,
X: E[

|X12]<€q

min

By = 0)‘Ak =0,By = 0] — h(Zy) (396)

_E [1og((7re)"'< det (HkHzggﬂn v 0—2|)) ‘Ak —0,B;, = 0}

— ng log(mec?) (397)
S
<E[log [T (1" "€ + 02) | Ax = 0. B, = 0]
L =1
— nrlogo? (398)
~E nRiilog 1+}H“’|255'—in Ay =0,B,=0
ng k o2 ’ ’
(399)
] . )
<E anog(l + — || Hg|)? SC'“;“) ‘Ak =0,B; = 0} (400)
L nR g

1 2
Sanog<1+nE[||Hk||2‘Ak=O,Bk:O] mm) (401)
R
262

0-2
o E[IIH[]
< 1 1 min
S MR Og( JrnRO'Q 1— By

(402)

where the last inequality follows from Lemma 9 and (206).
Thus,

I(X, HY 5 Y4 [ST, A, = 0, B, = 0)
< h(H|S}, Ay =0, By = 0)
— h(H,|[Hy ™, S}, 4, =0, B, = 0)

2¢2  E[|H, |2
+ g log [ 1+ Zomin SRR (403)
TLRO'2 1-— ﬂk
Next,
—h)\ (I:Ik eiek {I:Ig ei@[ Z:_;_H, Slf, Ak = O7 Bk; = 0)
S _h)\ (I:Ik eiek Hllc717 {I:IZ ei@g ’;;;_Hv Slfa
A, =0, Bj, = 0) (404)
= —ha (e B S5, 4, = 0) (405)

where we use that conditional on (Hf ™', S¥), Hy, is indepen-
dent of the input (use Fig. 6 in Appendix A to see that X} is
independent of Hj, when conditioned on (Hlf_l, S’f)).

The bounding of the last term on the right-hand side of
(213) is more elaborate. Note that the following derivation
can be extended to a more general setup (compare with [6,
Section 6]). We use the shorthand

V2 {A, =0,B, =0} (406)
and compute (using again .#{-} as the indicator function)
—ng E[log |[Hy|]?*|V]

= —2ncE [log [H | - #{||Eel| < 1}

+ log [Hl|- AL > 1} [V]  @o7)
>0
< 20k E [log [ Flu|| - 7 {[Fie]| < 1}V (408)
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= 2ng E [log(IFL1 1) - AIEL < 1Y) @09)

— 20 [ fugv(h) log(|] 1) b 410)
[Ih|I<1

A SN
o
+2nR |4 <1 T, v(h) log(|lbf~") dh.

Fray v (R)> [ 7172

1>

A11)

The two integrals are now bounded separately. Using the
surface area of the ng-dimensional complex unit-sphere lgzrn:
and the standard relation between the PDF of H;, and the PDF

of ||Hg]|, we obtain

= fin)<1 frw() log (]| ~) dh  (412)
Srgp(M)<[h| /2 >0
< [y log(jh) ) dn @13)
[hf<1
27" / 2ng— 32 —1
= re™ =2 log(r=) dr (414)
T0m) e )
8w
= 415
T'(ng) (dnm — 1)? “1)
The second integral can be bounded as follows:
1
l2 =2 [ 1 -1/25 Sa,p(h)log(|h]~2)dh  (416)
S v (h)> ||| ~1/2
<2 [h(~1/2>1 fHk|\7(h) log fHk\f}(h) dh (417)
i v (B)>|h[ /2
<2 fet, o) log feg, p(b)d 418)
fray p(h)>1
£ 2h™ (Hi|V). (419)

Here the last step should be read as definition of A~ (Hy|V).
We have

h™ (Hg|V) = h* (H|V) — h(Hg|V) (420)
where
Rt (Hi|V)
A 1
2 fr.p(h) log ————dh (421)
/0<fHkv(h)<1 Hily fa,v(h)
~(h 1
:p+/ Ty, _dh
0<fa pm)<l P fa,v()/p
—pTlogp™ (422)
with
pT 2 Pr[0 < fu,p(Hi) < 1]. (423)

Note that the first term in (422) is a differential entropy of
a PDF on the set {h: 0 < fg, p(h) < 1}. We now bound
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this differential entropy by a standard bound on differential
entropy for a given second moment:

e
h(U) < ng log(nR E [||U2]> (424)
(compare (343)—-(349)). With
/ i 2 an
0< fyr,, v (h)<1 p
1
< [ I i () b (425)
p Cmr
1 _
= I;E[HHWM (426)
we hence obtain
W (Hg|V)
me —
<pFme log<an+ E[IlHklle) —ptlogp™  (427)

. anog<E[|Hkn Iv]> (n + L)p* log p* (428)

_ 1

"R: Ly (430)

< ng log(l + E[|Hk||2|V]> +
ng
Combining (411), (415), (419), (420), and (430) now yields
—ng E[log |[Hy|]?*|V]

16ng ™R

_ AOmRT™ 2 e 2|y,
< +4anog(1 + T M)

4 1 .
+ % — dngh(H|V) 31)
16ngm"™ 2re E[|[Hy|?
_ OMRT L 4n210g( 14 2EE ZUTERTL
- F(?’LR>(477,R — 1) R g( nRr 1 — ﬁk
4 1 )
L Anr(e 1) Angh(H|SE, V) (432)

e
where in the last step we have again made use of Lemma 9
and of (206), and we conditioned the last term on S’f.
From (403), (405), and (432) we now obtain

I(Xy, Hy ' Yi[ST, Ay = 0, By = 0)
— h)\ (I:Ik eiek {I:Ig ei@’f ]Z;;_H, Slf7Ak = 07 Bk = 0)
— NR E [log ||Hk||2|Ak = O,Bk = O]

—(4ng — 1) h(Hy|S}, Ay, = 0, B, = 0)

— h(H,|HY ', S}, Ay = 0, B, = 0)

262, E[IIHx[?]
1 1 mm
+ nRr og( +nR02 1= 5
— ha (FL O [HEL,8E, A = 0) + o
AR Lok T(ng)(4ng — 1)2

ore E[||Hy|? 4 1
an2iog( 14 2me EUBEDY | dnwlon 1) )
nr 1— 0Bk e
< —4dng h(H[H{ ', ST, Ay = 0, B, = 0)
+4nR(nR—|—1)

. —h,\(I:Ik eiek’Hlf_l,Slf,Ak ZO)
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16ngm™® 2¢2 [HHk” ]
- 1 mln
T(ng)(dng —1)2 'R °g< T ro? 1- By
ore E|||H
+4’I’L 1Og 1+ — me M (434)
nr 1B
4 1
< —dng h(HG[H™L, S0 Ay = 0) + %
— ha (HO el@o ’H: SO—OO’AO = O)
16ng ™ 262, E[IHol*]
1 1 mm
+ F(’I’LR)(4TLR — 1)2 + R Og( + R0'2 1 — 6k
2me E[HHOH ]
dnzlog| 1+ — ————— |. 435
+ 4n2 lo < + . 1— B (435)

Here, in (434), we add more conditioning; and in the last in-
equality (435) we use the fact that conditional on (H} ', S%),
Hj, is independent of the input (use Fig. 6 in Appendix A
to see that XV is independent of Hj; when conditioned on
(H’f -1 S’f)), and then rely on stationarity and add some more
additional conditioning.
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