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Impact of Feedback and Side-Information on the
Asymptotic Capacity of Single-Input

Multiple-Output Fading Channels
With Memory

Stefan M. Moser, Senior Member, IEEE

Abstract—An analytic expression for the asymptotic capacity of
noncoherent single-input multiple-output (SIMO) regular fading
channels with memory and with partial receiver side-information
is derived and is shown to remain unchanged by causal or
acausal side-information at the transmitter and by a noiseless
feedback link. In particular, the corresponding fading numbers
are identical. Furthermore, the asymptotic capacity of a single-
input single-output (SISO) nonregular Gaussian fading channel
with memory is investigated, and it is shown that the prelog is
unaffected by noiseless feedback.

Index Terms—Causality, channel capacity, fading channel, fad-
ing number, feedback, high signal-to-noise ratio (SNR), multiple
antennas, nonregular Gaussian fading, prelog, regular fading,
side-information.

I. INTRODUCTION

I N LITERATURE, there exists a large variety of different
channel models that try to describe the behavior of mo-

bile wireless communication systems. The historically oldest
models are the coherent fading channels that assume that the
receiver has free and noiseless access to the current fading
realization [1]. This simplification can sometimes be justified,
e.g., at low power when the errors are dominated by the
additive noise. At high power, the noncoherent fading models
describe real systems more accurately because there it is
assumed that transmitter and receiver only have statistical
knowledge of the fading process, but no direct access to the
current fading realization.

There are again many families of such noncoherent models,
reaching from block-fading models (fading remains perfectly
unchanged during a certain time, before it takes on a new, pos-
sibly dependent value [2]–[4]), to underspread fading channels
(the fading process is wide-sense stationary and uncorrelated
in the delay, and the product of the delay and Doppler spread
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is small [5] (and references therein)), and to stationary fading
models [6]–[8].

In this paper, we will focus on the last family. We will
assume that the fading process is some stationary and ergodic
stochastic process of finite energy. It has been shown that
depending on the exact assumptions about this process, the
high-SNR capacity of such a noncoherent fading channel can
vary largely. For example, so-called regular fading channels1

exhibit an extremely slow, double-logarithmic growth of the
capacity in the available power [6]. To describe the exact
asymptotic behavior, [6] introduces the fading number χ as
the second term in the high-SNR asymptotic expansion of the
channel capacity C:

χ , lim
Es↑∞
{C(Es)− log log Es}. (1)

(Here Es denotes either the available average power or the
available peak power at the transmitter.) An analytic expres-
sion for its value for general multiple-input multiple-output
fading channels with memory has been derived in [6], [9], [10].
In particular, the single-input multiple-output (SIMO) fading
number with memory is given as2

χ({Hk}) = hλ

(
Ĥ0 e

iΘ0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−∞

)
− log 2

+ nR E
[
log ‖H0‖2

]
− h
(
H0

∣∣H−1
−∞
)

(2)

where {Θk} is independent and identically distributed (IID)
∼ U((−π, π]) and independent of {Hk}.

We remark that beside describing the asymptotic capacity,
the fading number is also of importance as an indicator
of the borderline between the logarithmically growing low-
SNR regime and the double-logarithmically growing high-
SNR regime (for more details see [10, Section I]).

For nonregular fading processes, the growth rate can range
from double-logarithmic up to logarithmic, depending on the
specific assumptions about the process [7]. In the situation of a
logarithmic growth, we are particularly interested in the factor
in front of the logarithm, the so-called prelog,3

Π , lim
Es↑∞

C(Es)

log Es
. (3)

1Loosely speaking, a fading process is regular if its current value cannot
be predicted precisely even if the infinite past is known exactly. We define
regularity based on the value of the differential entropy rate of the process,
see Section II.

2For a definition of Ĥ and hλ(·), see Section III-A.
3In literature, this term sometimes is also called ’multiplexing gain’.
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Fig. 1. SIMO fading channel with causal side-information at both transmitter and receiver and a noiseless causal feedback link from the receiver back to the
transmitter.

For the situation of a single-antenna stationary complex Gaus-
sian fading channel with a line-of-sight component and a given
spectral distribution function F(λ), − 1

2 < λ ≤ 1
2 , the prelog

(under a peak-power constraint) has been derived in [7]:

Πpp({Hk}) = µL
({
λ : F′(λ) = 0

})
(4)

where µL(·) denotes the Lebesgue measure on the interval
[−1/2, 1/2].

In this work, we return to these results and investigate
what the impact of a feedback link and of side-information
is on the asymptotic capacity of these fading channels. Our
contributions are as follows:

1) We derive the fading number of a general SIMO regular
fading channel with memory in the situation when the
receiver has access to some partial side-information
about the fading process.

2) We derive the fading number of a general SIMO regular
fading channel with memory in the situation when there
exists an arbitrary causal feedback link from the receiver
back to the transmitter and when both receiver and
transmitter have access to some partial side-information
about the fading process.

3) We generalize the result of Contribution 2 to the sit-
uation when the transmitter has acausal access to the
side-information.

4) We derive the prelog of a single-input single-output
(SISO) Gaussian fading channel with temporal memory
in the situation when there exists an arbitrary causal
feedback link from the receiver back to the transmitter.

The remainder of this paper is structured as follows. Section II
starts with a detailed definition of the channel model and then

gives some comments about our notation. Section III summa-
rizes some mathematical preliminaries before, in Section IV,
we present our main results together with a discussion.

The rest of the paper then focuses on the derivations: in
Section V, we find a lower bound to the fading number of
a SIMO fading channel with receiver side-information (no
feedback); in Sections VI and VII, we present the derivations
of an upper bound on the fading number of a SIMO fading
channel with feedback and with causal and acausal side-
information, respectively; and in Section VIII, we investigate
the prelog of a SISO Gaussian fading channel with memory
and with feedback.

Some parts of the derivations have been moved to the
appendix. In particular, in Appendix A we focus on detailed
investigations of dependencies between different random quan-
tities, where we rely on a graphical tool presented in [11], [12].

II. CHANNEL MODEL

We consider a communication system as depicted in Fig. 1.
A message M is transmitted over a single-input multiple-
output (SIMO) fading channel with memory. The channel out-
put Yk ∈ CnR at time k (with nR components corresponding
to the nR antennas at the receiver) is given by

Yk = Hkxk + Zk (5)

where xk ∈ C denotes the input of the channel at time k; the
random vector Hk ∈ CnR denotes the time-k fading vector;
and Zk ∈ CnR denotes the time-k additive noise vector. It is
assumed that {Zk} and {Hk} are independent and that their
joint law does not depend on the channel input. The fading
is noncoherent, i.e., neither transmitter nor receiver know the
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realization of the fading process {Hk}; they only know its
law.

The additive noise process {Zk} is assumed to be a spa-
tially and temporally white, zero-mean, circularly symmetric,
complex Gaussian vector process,

{Zk} IID ∼ NC
(
0, σ2I

)
(6)

for some σ2 > 0.
The fading {Hk} is foremost assumed to be a stationary

and ergodic stochastic process of finite energy

E
[
‖Hk‖2

]
<∞. (7)

Then we consider two different scenarios. In the first scenario,
we do not specify a particular distribution, but only make the
additional assumption of the fading being a regular stochastic
process, i.e., {Hk} is of finite differential entropy rate

h({Hk}) > −∞. (8)

In the second scenario we address the more general case
where h({Hk}) need not be finite, but we restrict ourselves
to Gaussian fading and to only one antenna at the receiver
nR = 1. Specifically, we assume that {H̃k} , {Hk − d} is
a zero-mean, finite-variance, stationary, circularly-symmetric,
Gaussian process of some arbitrary spectral distribution func-
tion

F(λ), −1

2
≤ λ ≤ 1

2
. (9)

The constant d ∈ C denotes the spectral component of the
fading process {Hk}.

Furthermore, in the first scenario of a regular fading process,
we also consider a side-information process {Sk}, Sk ∈ CnS ,
that carries partial information about the fading process. It
is assumed that the fading process {Hk} and the side-infor-
mation process {Sk} are jointly stationary, ergodic, of finite
energy, and of finite joint differential entropy rate

h({Hk,Sk}) , lim
n→∞

1

n
h
(
Hn

1 ,S
n
1

)
> −∞. (10)

It is still assumed that ({Hk}, {Sk}) are independent of the
additive noise {Zk}, and the joint law of ({Hk}, {Sk}, {Zk})
does not depend on the channel input.

Finally, we allow a feedback link from the receiver back to
the transmitter. The feedback is assumed to be noiseless (i.e.,
of infinite capacity), but delayed by one time-step, so that the
feedback random vector Fk that is available to the transmitter
at time instant k consists of the complete knowledge of the
receiver at time k − 1, i.e.,

Fk = Yk−1
1 (11)

or, if the receiver also has side-information available,

Fk =
(
Yk−1

1 ,Sk−1
1

)
. (12)

Such a feedback link is, of course, overly optimistic for any
realistic feedback system, which will always be limited by a
finite rate. However, it will serve as an upper bound on what
is possible with any type of realistic feedback. In fact, we will
show that at high power, feedback will not increase capacity

in spite of it being noiseless and in spite of the memory in the
channel.

We consider two types of power constraints. Either we will
constrain the input power on average,

1

n

n∑
k=1

E
[∣∣Xk

(
M,Sk1 ,F

k
1

)∣∣2] ≤ Es (13)

or we impose a peak-power constraint,∣∣Xk

(
M,Sk1 ,F

k
1

)∣∣2 ≤ Es, a.s., ∀ k = 1, . . . , n. (14)

We end this section with a few remarks on our notation.
Since this paper compares various different channel models,
we try to be very careful in specifying the current assumptions.
So, we use superscripts “avg” and “pp” to denote an average-
power constraint and a peak-power constraint, respectively. If
neither superscript is given, then the result holds for both types
of power constraints.

Whenever feedback is available, this is highlighted by
a subscript “FB”. For receiver side-information, we use a
“conditioning” notation, e.g., R(Es|{Sk}) represents the rate
for power Es and with side-information {Sk} available at
the receiver. If the side-information is also available at the
transmitter, we use the subscript “c” or “ac” for causal and
acausal side-information at the transmitter, respectively.

Clearly,

Cpp(Es) ≤ Cavg(Es) ≤ Cavg
FB (Es) (15)

Cpp(Es) ≤ Cpp
FB(Es) (16)

Ci(Es|{Sk}) ≤ Cic(Es|{Sk}) ≤ Ciac(Es|{Sk}),
i ∈ {avg, pp}. (17)

We meticulously distinguish between random and nonran-
dom quantities. A random variable is denoted by a capital
Roman letter, e.g., M , while its realization is denoted by the
corresponding small Roman letter, e.g., m. Vectors are bold-
faced, e.g., H denotes a random vector and h its realization.
Constants are typeset either in small Romans, in Greek letters
or in a capital sans-serif font, e.g., F(λ) or Es. The only
exception to these rules is the mutual information functional
that is typeset as I(·; ·) as is very common in literature. Sets
are typeset in calligraphic font, e.g., V , and C and R denote
the fields of the complex and the real numbers, respectively.

Entropy is typeset as H(·), differential entropy by h(·), and
by Hb(·) we denote the binary entropy function

Hb(p) , −p log p− (1− p) log(1− p), p ∈ [0, 1]. (18)

For a unit vector Ĥ, we write hλ(Ĥ) for the differential
entropy with respect to the surface area of a unit sphere in
Cm, see Section III-A.

By M ∼ U(M) we mean that the random variable M
is uniformly distributed over the set M, and Hj

i stands for
(Hi, . . . ,Hj).

We exclusively use the natural logarithm, and all rates are
therefore specified in nats.
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III. MATHEMATICAL PRELIMINARIES

A. Differential Entropy and Expected Logarithms

In [6, Section VI.D] (and in much abbreviated form also
in [10, Section II]), one finds an extensive discussion of
fundamental properties of differential entropy and expected
logarithms. The main point made there is that for a random
vector H that is of finite second moment E

[
‖H‖2

]
<∞ and

of finite differential entropy h(H) > −∞, expected logarithms
and differential entropy expressions are well-defined and finite.

This can be understood when realizing that differential
entropy can be written as the difference of two nonnegative
parts:

h(H) = h+(H)− h−(H) (19)

where

h+(H) ,
∫
{h : 0<fH(h)<1}

fH(h) log
1

fH(h)
dh ≥ 0 (20)

h−(H) ,
∫
{h : fH(h)>1}

fH(h) log fH(h) dh ≥ 0. (21)

Note that for the differential entropy to be defined, at least
one of the two integrals (20) or (21) must be finite.

The assumption of a finite second moment now guarantees
a finite upper bound on h+(H) and therefore on h(H), and
the assumption of a finite differential entropy rate makes sure
that h−(H) is finite. Moreover, this analysis can be extended
to the expected logarithm: The assumption of finite energy
trivially guarantees that E

[
log ‖H‖2

]
is bounded from above

(by Jensen’s inequality), while the boundedness of h−(H)
provides a finite lower bound on E

[
log ‖H‖2

]
.

These arguments can also be generalized to a situation with
memory. There a finite second moment and a finite lower
bound on the entropy rate will make sure that all differential
entropy expressions and expected logarithms are well-defined
and finite. Moreover, we can also include situations when we
condition a differential entropy expression or an expected log-
arithm to one out of a finite number of disjoint events that form
a partition. Again, the assumption of a finite second moment
and a finite differential entropy rate will make sure that such
conditional entropy or logarithm expressions remain finite.
Compare also with the derivations shown in Appendix E.

Moreover, all these results also hold for the differential
entropy hλ(·) with respect to the surface of the unit sphere
in Cm as defined in [6, Section VI.D]. Recall that if we
split a complex random vector H ∈ Cm up into magnitude
‖H‖ ∈ R+

0 and direction

Ĥ ,
H

‖H‖
(22)

then the latter is a unit vector and therefore has zero measure
with respect to a probability distribution over Cm. We there-
fore define a new probability density function (PDF) fλ

Ĥ
(·)

with respect to a measure λ that lives on the m-dimensional
complex unit sphere. The corresponding differential entropy
then simply is defined as

hλ
(
Ĥ
)
, E

[
−log fλ

Ĥ
(Ĥ)

]
. (23)

The connection between h(H) and hλ(Ĥ) is as follows.
Lemma 1: Let H ∈ Cm be a complex random vector with a

finite differential entropy h(H). Let ‖H‖ denote its magnitude
and Ĥ its direction as in (22). Then

h(H) = h(‖H‖) + hλ
(
Ĥ
∣∣‖H‖)+ (2m− 1) E[log ‖H‖] (24)

= hλ
(
Ĥ
)

+ h
(
‖H‖

∣∣Ĥ)+ (2m− 1) E[log ‖H‖]. (25)

Proof: See, e.g., [10, Lemma 2].

B. Stationarity and Joint Differential Entropy Rate
The joint differential entropy rate of two jointly stochastic

processes {Hk,Sk} is defined as

h({Hk,Sk}) , lim
n↑∞

1

n
h
(
Hn

1 ,S
n
1

)
(26)

if the limit exists. By our assumptions of {Hk,Sk} being
jointly stationary, ergodic, of finite energy and of finite differ-
ential entropy rate we make sure that the limit indeed exists
and is finite. Moreover, it is not difficult to show that — under
above mentioned assumptions — also

h({Hk,Sk}) = lim
n↑∞

h
(
Hn,Sn

∣∣Hn−1
1 ,Sn−1

1

)
. (27)

For the latter we usually write

lim
n↑∞

h
(
Hn,Sn

∣∣Hn−1
1 ,Sn−1

1

)
= lim
n↑∞

h
(
H0,S0

∣∣H−1
−n+1,S

−1
−n+1

)
(28)

= h
(
H0,S0

∣∣H−1
−∞,S

−1
−∞
)

(29)

where the first equality follows from stationarity and the
second is a convenient shorthand. One needs to be aware,
however, that this shorthand hides a limit (which exists and is
finite).

Note that there exist many variations of such entropy
definitions. Under our assumptions, all these different expres-
sions are well-defined and finite. For example, the conditional
entropy rate can be given in various different equivalent forms:

h
(
{Hk}

∣∣{Sk})
, lim
n↑∞

1

n
h(Hn

1 |Sn1 ) (30)

= lim
n↑∞

1

n

(
h(Hn

1 ,S
n
1 )− h(Sn1 )

)
(31)

= h({Hk,Sk})− h({Sk}) (32)

= lim
n↑∞

{
h
(
Hn,Sn

∣∣Hn−1
1 ,Sn−1

1

)
− h
(
Sn
∣∣Sn−1

1

)}
(33)

= lim
n↑∞

{
h
(
Hn

∣∣Hn−1
1 ,Sn1

)
+ h
(
Sn
∣∣Hn−1

1 ,Sn−1
1

)
− h
(
Sn
∣∣Sn−1

1

)}
(34)

= lim
n↑∞

{
h
(
Hn

∣∣Hn−1
1 ,Sn1

)
− I
(
Sn;Hn−1

1

∣∣Sn−1
1

)}
(35)

= lim
n↑∞

h
(
H0

∣∣H−1
−n+1,S

0
−n+1

)
(36)

= h
(
H0

∣∣H−1
−∞,S

0
−∞
)
. (37)

Here, (36) can be argued using a tool explained in Appendix A.
Again, the reader is warned to keep in mind that the shorthand
(37) actually involves a limit, but that this limit does exist and
is finite.
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C. Duality-Based Bounds on Mutual Information

Based on an identity given in [13] and [14, Section 2.3,
Equation (3.7)], a duality-based upper bound on the mutual
information between input and output of a memoryless channel
is presented in [6], [15]. For convenience, we review this
bound here quickly, however, we state it without proof and
only in the form needed for our derivations. For a more general
version and for the proofs, we refer to [6], [15].

Lemma 2: Consider a memoryless channel with input X ∈
C and output T ∈ C. Then

I(X;T ) ≤ −h(T |X) + log π + µ log η + log Γ

(
µ,
ν

η

)
+
ν

η

+ (1− µ) E
[
log
(
|T |2 + ν

)]
+

1

η
E
[
|T |2

]
(38)

where µ, η > 0 and ν ≥ 0 are free parameters.

IV. MAIN RESULTS

A. Regular Fading with Memory and Receiver Side-Informa-
tion

Theorem 3: Consider a SIMO regular fading channel with
memory as given in (5) and (8), where the receiver has
access to some partial side-information {Sk} according to the
description around (10), and where the input is subject to either
an average-power constraint (13) or a peak-power constraint
(14). Then the capacity grows double-logarithmically in the
power and the fading number is given as

χ
(
{Hk}

∣∣{Sk}) , lim
Es↑∞

{
C
(
Es
∣∣{Sk})− log log Es

}
(39)

= hλ

(
Ĥ0 e

iΘ0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−∞,S
0
−∞

)
− log 2 + nR E

[
log ‖H0‖2

]
− h
(
H0

∣∣H−1
−∞,S

0
−∞
)

(40)

where {Θk} is an independent random process that is IID
∼ U((−π, π]).

Proof: A lower bound under the assumption of a peak-
power constraint is derived in Section V. The result then
follows because

χ
(
{Hk}

∣∣{Sk}) ≤ χavg
FB,c

(
{Hk}

∣∣{Sk}) (41)

and from Theorem 4 below.
Note that χ

(
{Hk}

∣∣{Sk}) can be expressed with the help of
the SIMO fading number χ({Hk}) with memory, but without
side-information as given in (2) as follows:

χ
(
{Hk}

∣∣{Sk}) = χ({Hk}) + I
(
H0;S0

−∞
∣∣H−1
−∞
)

− I
(
Ĥ0 e

iΘ0 ;S0
−∞

∣∣∣{Ĥ` e
iΘ`
}−1

`=−∞

)
.

(42)

B. Regular Fading with Memory, Feedback, and Causal Side-
Information

Theorem 4: Consider a SIMO regular fading channel as
given in Theorem 3, but additionally assume a noiseless causal
feedback link from the receiver back to the transmitter and
assume that the side-information also is revealed causally to

the transmitter (see Fig. 1). Then the capacity remains as
given in Theorem 3, i.e., it grows double-logarithmically in
the power and has the same fading number

χFB,c
(
{Hk}

∣∣{Sk}) = χ
(
{Hk}

∣∣{Sk}). (43)

Proof: Using

χFB,c
(
{Hk}

∣∣{Sk}) ≥ χpp({Hk}
∣∣{Sk}) (44)

and Theorem 3, we get a lower bound under the assumption of
a peak-power constraint. An upper bound, under the assump-
tion of an average-power constraint, is derived in Section VI.

We see that feedback and transmitter side-information do not
change the asymptotic capacity in spite of the memory in the
channel.

Corollary 5: Any type of feedback or causal side-informa-
tion at the transmitter does not increase the fading number of
a general SIMO fading channel with memory. As a matter of
fact, it is not difficult to adapt the proof to show that even
the revelation of the past fading realizations at the transmitter
does not increase the asymptotic capacity.

C. Regular Fading with Memory, Feedback, and Acausal Side-
Information

Theorem 6: Consider a SIMO regular fading channel with
feedback and side-information as given in Theorem 4, but
assume that the side-information is revealed acausally to the
transmitter in advance. Then the capacity still grows only
double-logarithmically in the power and the fading number
remains unchanged:

χFB,ac
(
{Hk}

∣∣{Sk}) = χFB,c
(
{Hk}

∣∣{Sk}) (45)
= χ

(
{Hk}

∣∣{Sk}). (46)

Proof: A lower bound follows from

χFB,ac
(
{Hk}

∣∣{Sk}) ≥ χpp({Hk}
∣∣{Sk}) (47)

and Theorem 3. An upper bound, under the assumption of an
average-power constraint, is derived in Section VII.
Note again that the result continues to hold even if the past
fading realizations are revealed to the transmitter.

D. Nonregular Gaussian Fading with Memory and Feedback

Theorem 7: Consider a SISO nonregular Gaussian fading
channel with spectral distribution function F(·) as described
around (9), and consider a peak-power constraint (14). Then
the prelog of the asymptotic capacity with a causal noiseless
feedback link is identical to the prelog without feedback and
is given as

Πpp
FB({Hk}) = Πpp({Hk}) = µL

({
λ : F′(λ) = 0

})
. (48)

Proof: A lower bound follows from

Πpp
FB({Hk}) ≥ Πpp({Hk}) (49)

and from the results given in [7]. An upper bound is derived
in Section VIII.
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E. Discussion

We see that the asymptotic capacity of the large class of
SIMO regular fading channels remains unchanged even if one
allows causal noiseless feedback and transmitter side-informa-
tion. This once more exemplifies the extremely unattractive
behavior of regular fading channels at high SNR: besides the
double-logarithmic growth [6] and the very poor performance
in a multiple-user setup (where the maximum sum-rate only
can be achieved if the channel is used exclusively by one user
only and the other users can never communicate at all [16]),
we now also have shown that any type of feedback does not
increase capacity in spite of the memory in the channel.

Similarly, also the capacity of nonregular Gaussian fading
channels is not strongly increased by feedback as the factor in
front of the logarithm is not improved by feedback. Note that
for proof-technical reasons we have only proven the case of a
peak-power constraint. We believe that the channel will exhibit
the same behavior also under an average-power constraint.

We would like to point out the main challenges for the
derivations given in Sections V–VIII:

1) Due to the feedback, the channel input, the fading, and
the additive noise become dependent.

2) We cannot rely on the important auxiliary result given in
[10, Theorem 3] that shows that the optimal input is sta-
tionary. Indeed, since the transmitter continually learns
more about the fading process through the feedback,
the optimal input changes, i.e., the system is inherently
nonstationary in spite of the stationary fading and noise
processes.

3) We cannot rely on the important auxiliary result given
in [9, Theorem 8] that shows that the capacity-achieving
input distribution escapes to infinity, i.e., Xk → ∞ as
Es →∞ almost surely.

Particularly the implicit dependence between the input and the
channel noise introduces very subtle challenges. Indeed, we
stumbled over this in [15], [17], [18]: While the asymptotic
results given there are correct, their derivations contain a flaw
that we only managed to fix very recently. Moreover, the
results in [15] and [18] with respect to the feedback capacity
for finite power (i.e., [15, Section 8.2.2], [18, Theorem 1]) are
wrong or at least remain unproven.

Even though the derivations given in Sections V–VII turn
out to be quite elaborate, by the following hand-waving
argument, one can nevertheless intuitively understand why
regular fading channels behave so poorly. To that goal note that
since the fading process is assumed to be regular with a finite
differential entropy rate, it is not possible to perfectly predict
the future realizations of the process even if one is presented
with the exact realizations of the infinite past. Nevertheless the
feedback allows the transmitter to make an estimate of future
realizations. Based on these estimates, the transmitter can
then perform elaborate schemes of optimal power allocation
over time: if the channel state is likely to be poor, it saves
power and uses it once the channel state is likely to be good
again. Unfortunately, due to the double-logarithmic behavior
of capacity, such power allocation has no effect at all: for any

constant t > 0 (t can be chosen arbitrarily large!),

lim
Es↑∞
{log log(tEs)− log log Es}

= lim
Es↑∞
{log(log t+ log Es)− log log Es} (50)

= lim
Es↑∞
{log(log Es)− log log Es} (51)

= 0. (52)

So not only the double-logarithmic growth is left untouched,
but also the second term, i.e., the fading number, remains
unchanged.

V. A LOWER BOUND ON THE FADING NUMBER WITH
RECEIVER SIDE-INFORMATION

To derive a lower bound on capacity of the channel model
described in Theorem 3 (i.e., without feedback or transmitter
side-information), we choose a specific input distribution. This
naturally yields a lower bound. Let {Xk} be of the form

Xk , Rk e
iΘk . (53)

Here {Θk} is a sequence of IID random variables that are
uniformly distributed on (−π, π]. The stochastic process {Rk}
is chosen to be independent of {eiΘk} and to consist of random
variables Rk ∈ R+

0 that are IID with

logR2
k ∼ U

(
[log x2

min, log Es]
)

(54)

where we choose x2
min as

x2
min , log Es. (55)

Note that this choice of {Xk} satisfies the peak-power con-
straint (14) and therefore also the average-power constraint
(13).

We now fix some (large) positive integer κ and use the chain
rule and the nonnegativity of mutual information to bound:

1

n
I(Xn

1 ;Yn
1 ,S

n
1 ) =

1

n

n∑
k=1

I
(
Xk;Yn

1 ,S
n
1

∣∣Xk−1
1

)
(56)

≥ 1

n

n−κ∑
k=κ+1

I
(
Xk;Yn

1 ,S
n
1

∣∣Xk−1
1

)
. (57)

Then for every κ + 1 ≤ k ≤ n − κ, we can use the fact that
{Xk} is IID to lower-bound I

(
Xk;Yn

1 ,S
n
1

∣∣Xk−1
1

)
as follows:

I
(
Xk;Yn

1 ,S
n
1

∣∣Xk−1
1

)
≥ I
(
Xk;Yk+κ

k−κ,S
k+κ
k−κ

∣∣Xk−1
1

)
(58)

= I
(
Xk;Yk+κ

k−κ,S
k+κ
k−κ

∣∣Xk−1
k−κ

)
(59)

= I
(
Xk;Yk+κ

k−κ,S
k+κ
k−κ,Z

k−1
k−κ,Z

k+κ
k+1

∣∣Xk−1
k−κ

)
− I
(
Xk;Zk−1

k−κ,Z
k+κ
k+1

∣∣Yk+κ
k−κ,S

k+κ
k−κ, X

k−1
k−κ

)︸ ︷︷ ︸
≤ δ1(xmin,κ)

(60)

≥ I
(
Xk;Yk+κ

k−κ,Z
k−1
k−κ,Z

k+κ
k+1 ,S

k+κ
k−κ

∣∣Xk−1
k−κ

)
− δ1(xmin, κ) (61)

= I
(
Xk;Yk, {H`X`}k−1

`=k−κ, {H`X`}k+κ
`=k+1,S

k+κ
k−κ

∣∣Xk−1
k−κ

)
− δ1(xmin, κ) (62)
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= I
(
Xk;Yk,H

k−1
k−κ,

{
‖H`‖R`

}k+κ

`=k+1
,
{
Ĥ` e

iΘ`
}k+κ

`=k+1
,

Sk+κ
k−κ

)
− δ1(xmin, κ) (63)

≥ I
(
Xk;Yk,H

k−1
k−κ,

{
Ĥ` e

iΘ`
}k+κ

`=k+1
,Sk+κ

k−κ

)
− δ1(xmin, κ) (64)

= I
(
Xk;Yk

∣∣∣Hk−1
k−κ,

{
Ĥ` e

iΘ`
}k+κ

`=k+1
,Sk+κ

k−κ

)
− δ1(xmin, κ). (65)

Here, (58) follows from dropping some random quantities
in the argument of the mutual information term; (59) holds
because {Xk} is IID and independent of fading and side-
information; (60) results from the chain rule; and (61) follows
from the following lemma.

Lemma 8: Let {Xk} be as specified in (53)–(55). Then

I
(
Xk;Zk−1

k−κ,Z
k+κ
k+1

∣∣Yk+κ
k−κ,S

k+κ
k−κ, X

k−1
k−κ

)
≤ δ1(xmin, κ) (66)

where δ1(xmin, κ) is defined in Appendix B, is independent of
k and the distribution of {Xk}, and tends to zero as xmin ↑ ∞.

Proof: See Appendix B.
In (62) we firstly extract {H`X`} from {Y`} using the noise
{Z`} and then drop {Y`,Z`} because it is independent of
(Xk,Yk) when conditioned on {H`X`}; in (63) we split
H`X` into magnitude and direction for ` = k+ 1, . . . , k+ κ,
and extract H` for ` = k − κ, . . . , k − 1 and then drop the
conditioning since it is independent of the remaining terms;
in (64) we drop some arguments; and (65) follows from our
choice of {Xk} being IID.

Hence, using (65) in (57) we get

1

n
I
(
Xn

1 ;Yn
1 ,S

n
1

)
≥ 1

n

n−κ∑
k=κ+1

(
I
(
Xk;Yk

∣∣∣Hk−1
k−κ,

{
Ĥ` e

iΘ`
}k+κ

`=k+1
,Sk+κ

k−κ

)
− δ1(xmin, κ)

)
(67)

=
n− 2κ

n

(
I
(
X0;Y0

∣∣∣H−1
−κ,

{
Ĥ` e

iΘ`
}κ
`=1

,Sκ−κ

)
− δ1(xmin, κ)

)
(68)

where (68) follows from stationarity. Letting n tend to infinity
we obtain

C(Es|{Sk}) ≥ I
(
X0;Y0

∣∣∣H−1
−κ,

{
Ĥ` e

iΘ`
}κ
`=1

,Sκ−κ

)
− δ1(xmin, κ). (69)

We next let the power grow to infinity Es ↑ ∞ and use the
definition of the fading number. Note that the distribution of
X0 (the product of (54) with the circularly symmetric law
from eiΘ0 ) achieves the fading number of a memoryless SIMO
fading channel with side-information [6, Proposition 4.23],
[15, Proposition 6.23]. Moreover, our choice (55) guarantees
that δ1(xmin, κ) tends to zero as Es ↑ ∞. Therefore, we obtain
the following bound:

χ
(
{Hk}

∣∣{Sk})
= lim

Es↑∞

{
C(Es|{Sk})− log log Es

}
(70)

≥ lim
Es↑∞

{
I
(
X0;Y0

∣∣∣H−1
−κ,

{
Ĥ` e

iΘ`
}κ
`=1

,Sκ−κ

)
− log log Es − δ1(xmin, κ)

}
(71)

= χIID

(
H0

∣∣∣H−1
−κ,

{
Ĥ` e

iΘ`
}κ
`=1

,Sκ−κ

)
(72)

= hλ

(
Ĥ0 e

iΘ0

∣∣∣H−1
−κ,

{
Ĥ` e

iΘ`
}κ
`=1

,Sκ−κ

)
− log 2 + nR E

[
log ‖H0‖2

]
− h
(
H0

∣∣∣H−1
−κ,

{
Ĥ` e

iΘ`
}κ
`=1

,Sκ−κ

)
. (73)

Here, in (73) we use the expression for the memoryless SIMO
fading number with side-information [6, Equation (108)]:

χIID(H|S) = hλ
(
Ĥ eiΘ

∣∣S)− log 2

+ nR E
[
log ‖H‖2

]
− h(H|S). (74)

Next, by using the definition of mutual information and by
repeatedly applying the chain rule, we note that

hλ

(
Ĥ0 e

iΘ0

∣∣∣{Ĥ` e
iΘ`
}κ
`=1

,H−1
−κ,S

κ
−κ

)
= hλ

(
Ĥ0 e

iΘ0

∣∣∣{Ĥ` e
iΘ`
}κ
`=1

,Sκ0

)
− I
(
Ĥ0 e

iΘ0 ;H−1
−κ,S

−1
−κ

∣∣∣{Ĥ` e
iΘ`
}κ
`=1

,Sκ0

)
(75)

= hλ

({
Ĥ` e

iΘ`
}κ
`=0

∣∣∣Sκ0)− hλ({Ĥ` e
iΘ`
}κ
`=1

∣∣∣Sκ0)
− I
(
Ĥ0 e

iΘ0 ;H−1
−κ,S

−1
−κ

∣∣∣{Ĥ` e
iΘ`
}κ
`=1

,Sκ0

)
± I
(
S0;H−1

−κ,S
−1
−κ

∣∣∣{Ĥ` e
iΘ`
}κ
`=1

,Sκ1

)
(76)

= hλ

({
Ĥ` e

iΘ`
}κ
`=0

)
− I
({

Ĥ` e
iΘ`
}κ
`=0

;Sκ0

)
− hλ

({
Ĥ` e

iΘ`
}κ
`=1

)
+ I
({

Ĥ` e
iΘ`
}κ
`=1

;Sκ0

)
− I
(
Ĥ0 e

iΘ0 ,S0;H−1
−κ,S

−1
−κ

∣∣∣{Ĥ` e
iΘ`
}κ
`=1

,Sκ1

)
+ h
(
S0

∣∣∣{Ĥ` e
iΘ`
}κ
`=1

,Sκ1

)
− h
(
S0

∣∣∣{Ĥ` e
iΘ`
}κ
`=1

,Sκ1 ,H
−1
−κ,S

−1
−κ

)
(77)

= hλ

({
Ĥ` e

iΘ`
}κ
`=0

)
− h
(
Sκ0
)

+ h
(
Sκ0

∣∣∣{Ĥ` e
iΘ`
}κ
`=0

)
− hλ

({
Ĥ` e

iΘ`
}κ
`=1

)
+ h
(
Sκ0
)
− h
(
Sκ0

∣∣∣{Ĥ` e
iΘ`
}κ
`=1

)
− I
({

Ĥ` e
iΘ`
}κ
`=0

,Sκ0 ;H−1
−κ,S

−1
−κ

)
+ I
({

Ĥ` e
iΘ`
}κ
`=1

,Sκ1 ;H−1
−κ,S

−1
−κ

)
+ h
(
Sκ0

∣∣∣{Ĥ` e
iΘ`
}κ
`=1

)
− h
(
Sκ1

∣∣∣{Ĥ` e
iΘ`
}κ
`=1

)
− h
(
S0

∣∣∣{Ĥ` e
iΘ`
}κ
`=1

,Sκ1 ,H
−1
−κ,S

−1
−κ

)
(78)

= hλ

({
Ĥ` e

iΘ`
}0

`=−κ

)
+ h
(
S0
−κ

∣∣∣{Ĥ` e
iΘ`
}0

`=−κ

)
− hλ

({
Ĥ` e

iΘ`
}−1

`=−κ

)
− I
({

Ĥ` e
iΘ`
}κ
`=0

,Sκ0 ;H−1
−κ,S

−1
−κ

)
+ I
({

Ĥ` e
iΘ`
}κ
`=1

,Sκ1 ;H−1
−κ,S

−1
−κ

)
− h
(
S−1
−κ

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ

)
− h
(
S0

∣∣∣{Ĥ` e
iΘ`
}κ
`=1

,Sκ1 ,H
−1
−κ,S

−1
−κ

)
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± I
(
Ĥ0 e

iΘ0 ;S0
−κ

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ

)
(79)

= hλ

(
Ĥ0 e

iΘ0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ

)
+ h
(
S0
−κ

∣∣∣{Ĥ` e
iΘ`
}0

`=−κ

)
− I
({

Ĥ` e
iΘ`
}κ
`=0

,Sκ0 ;H−1
−κ,S

−1
−κ

)
+ I
({

Ĥ` e
iΘ`
}κ
`=1

,Sκ1 ;H−1
−κ,S

−1
−κ

)
− h
(
S−1
−κ

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ

)
− h
(
S0

∣∣∣{Ĥ` e
iΘ`
}κ
`=1

,Sκ1 ,H
−1
−κ,S

−1
−κ

)
+ h
(
S0
−κ

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ

)
− h
(
S0
−κ

∣∣∣{Ĥ` e
iΘ`
}0

`=−κ

)
− hλ

(
Ĥ0 e

iΘ0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ

)
+ hλ

(
Ĥ0 e

iΘ0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ,S
0
−κ

)
(80)

= −I
({

Ĥ` e
iΘ`
}κ
`=0

,Sκ0 ;H−1
−κ,S

−1
−κ

)
+ I
({

Ĥ` e
iΘ`
}κ
`=1

,Sκ1 ;H−1
−κ,S

−1
−κ

)
− h
(
S0

∣∣∣{Ĥ` e
iΘ`
}κ
`=1

,Sκ1 ,H
−1
−κ,S

−1
−κ

)
+ h
(
S0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ,S
−1
−κ

)
+ hλ

(
Ĥ0 e

iΘ0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ,S
0
−κ

)
. (81)

Here, in (76) we add and subtract the same term; and (79)
follows by stationarity and again by adding and subtracting
the same term.

Furthermore,

−h
(
H0

∣∣∣H−1
−κ,

{
Ĥ` e

iΘ`
}κ
`=1

,Sκ−κ

)
= −h

(
H0,S0

∣∣∣H−1
−κ,S

−1
−κ,

{
Ĥ` e

iΘ`
}κ
`=1

,Sκ1

)
+ h
(
S0

∣∣∣H−1
−κ,S

−1
−κ,

{
Ĥ` e

iΘ`
}κ
`=1

,Sκ1

)
(82)

= −h
(
H0,S0

∣∣H−1
−κ,S

−1
−κ
)

+ I
(
H0,S0;

{
Ĥ` e

iΘ`
}κ
`=1

,Sκ1

∣∣∣H−1
−κ,S

−1
−κ

)
+ h
(
S0

∣∣∣H−1
−κ,S

−1
−κ,

{
Ĥ` e

iΘ`
}κ
`=1

,Sκ1

)
(83)

= −h
(
H0,S0

∣∣H−1
−κ,S

−1
−κ
)

+ I
(
H0
−κ,S

0
−κ;

{
Ĥ` e

iΘ`
}κ
`=1

,Sκ1

)
− I
(
H−1
−κ,S

−1
−κ;

{
Ĥ` e

iΘ`
}κ
`=1

,Sκ1

)
+ h
(
S0

∣∣∣H−1
−κ,S

−1
−κ,

{
Ĥ` e

iΘ`
}κ
`=1

,Sκ1

)
. (84)

Plugging (84) and (81) into (73) we hence obtain

χ({Hk}|{Sk})
≥ −I

({
Ĥ` e

iΘ`
}κ
`=0

,Sκ0 ;H−1
−κ,S

−1
−κ

)
+ I
({

Ĥ` e
iΘ`
}κ
`=1

,Sκ1 ;H−1
−κ,S

−1
−κ

)
− h
(
S0

∣∣∣{Ĥ` e
iΘ`
}κ
`=1

,Sκ1 ,H
−1
−κ,S

−1
−κ

)
+ h
(
S0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ,S
−1
−κ

)
+ hλ

(
Ĥ0 e

iΘ0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ,S
0
−κ

)

− log 2 + nR E
[
log ‖H0‖2

]
− h
(
H0,S0

∣∣H−1
−κ,S

−1
−κ
)

+ I
(
H0
−κ,S

0
−κ;

{
Ĥ` e

iΘ`
}κ
`=1

,Sκ1

)
− I
(
H−1
−κ,S

−1
−κ;

{
Ĥ` e

iΘ`
}κ
`=1

,Sκ1

)
+ h
(
S0

∣∣∣H−1
−κ,S

−1
−κ,

{
Ĥ` e

iΘ`
}κ
`=1

,Sκ1

)
(85)

= hλ

(
Ĥ0 e

iΘ0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ,S
0
−κ

)
− log 2 + nR E

[
log ‖H0‖2

]
− h
(
H0

∣∣H−1
−κ,S

0
−κ
)

+ h
(
S0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ,S
−1
−κ

)
− h
(
S0

∣∣H−1
−κ,S

−1
−κ
)

+ I
(
H0
−κ,S

0
−κ;

{
Ĥ` e

iΘ`
}κ
`=1

,Sκ1

)
− I
(
H−1
−κ,S

−1
−κ;

{
Ĥ` e

iΘ`
}κ
`=0

,Sκ0

)
. (86)

We next point out that

h
(
S0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ,S
−1
−κ

)
− h
(
S0

∣∣H−1
−κ,S

−1
−κ
)

= h
(
S0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ,S
−1
−κ

)
− h
(
S0

∣∣{H` e
iΘ`}−1

`=−κ,Θ
−1
−κ,S

−1
−κ
)

(87)

= h
(
S0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ,S
−1
−κ

)
− h
(
S0

∣∣∣{Ĥ` e
iΘ`}−1

`=−κ, {‖H`‖}−1
`=−κ,Θ

−1
−κ,S

−1
−κ

)
(88)

= I
(
S0; {‖H`‖}−1

`=−κ,Θ
−1
−κ

∣∣∣{Ĥ` e
iΘ`}−1

`=−κ,S
−1
−κ

)
(89)

≥ 0. (90)

Note that, using the tool from Appendix A, one can show that
the inequality actually holds with equality.4 Finally, we let κ
go to infinity. Stationarity of the input and the fading process
now makes sure that the two mutual information terms in (86)
cancel, and we obtain

χ({Hk}|{Sk})
≥ hλ

(
Ĥ0 e

iΘ0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−∞,S
0
−∞

)
− log 2

+ nR E
[
log ‖H0‖2

]
− h
(
H0

∣∣H−1
−∞,S

0
−∞
)
. (91)

VI. AN UPPER BOUND ON THE FADING NUMBER WITH
FEEDBACK AND CAUSAL SIDE-INFORMATION

A. Overview

While the basic structure of the following derivation is
relatively straightforward, there are many subtle details that
need to be taken care of and that complicate the proof
considerably. We therefore try to give a rough outline of the
proof first.

We start with the standard approach for deriving a converse
using Fano’s inequality:

RFB,c(Es|{Sk}) ≤
1

n

n∑
k=1

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1

)
+ ε̃n.

(92)

4This also can be argued indirectly: Since in Section VI we derive an upper
bound on the fading number without this term, it follows that the term must
be zero.



MOSER: IMPACT OF FEEDBACK AND SIDE-INFORMATION ON THE ASYMPTOTIC CAPACITY OF SIMO FADING CHANNELS 3507

We then would like to split the mutual information term into
three parts:

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1

)
≤ I
(
Xk;Yk

∣∣Sk1)+ I
(
Hk−1

1 ;Yk

∣∣Xk,S
k
1

)
− I
(
Yk−1

1 ;Yk

∣∣Sk1) (93)

where the first term basically corresponds to the memoryless
SIMO fading channel without feedback, and where the other
two terms are correction terms taking care of the memory.
While indeed these three terms are bounded separately in
Sections VI-D to VI-F and then combined in Section VI-G
to the final result, there are many obstacles on the way that
need to be circumvented.

First of all, note that for small k, the term I
(
M ;Yk,Sk

∣∣
Yk−1

1 ,Sk−1
1

)
goes through a transitional phase because for

small k the transmitter has only a very limited knowledge of
past fading realizations. Only for large k the transmitter can
properly rely on the statistical knowledge from the feedback.
In order to handle this transition phase, we split the sum in
(92) up into two parts:

1

n

n∑
k=1

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1

)
=

1

n

κ∑
k=1

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1

)
+

1

n

n∑
k=κ+1

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1

)
. (94)

The first part will then be bounded very roughly with the only
aim to make sure that it will disappear once we let n tend to
infinity. So we can focus on the second sum.

Then, as we are interested in the asymptotic capacity, we
would like to think that an optimal input satisfies Xk →∞ as
Es →∞. Unfortunately, while it is possible to use stationarity
of the channel model to prove such a result for the capacity-
achieving input of a channel without feedback, in the case
with feedback, the system is inherently nonstationary because
the knowledge at the transmitter grows at every time step and
therefore changes the optimal input. To solve this dilemma,
we introduce a case distinction on whether |Xk| is larger or
smaller than some given threshold ξmin, with βk denoting the
probability of the former case. In the derivations below, these
two cases are expressed by the indicator random variable Bk
as Bk = 1 or Bk = 0, respectively. We then need to prove
that as Es becomes large, it is optimal to have βk → 1. Note
that we have to take particular care here to make sure that we
only start to twiddle with Es once we have loosened n→∞.
For that reason we make an effort in deriving rough bounds
(that are independent of k) for terms that have a factor 1−βk
in front (i.e., terms that will disappear anyway once we prove
that βk → 1).

Finally, one needs to be aware that via the feedback and
the side-information, the current channel input Xk depends
on the past fading and therefore also on the current fading.

So, for example, the expression E
[
‖Hk‖2|Xk|2

]
that in the

case without feedback can be evaluated trivially as

E
[
‖Hk‖2|Xk|2

]
= E

[
‖Hk‖2

]
E
[
|Xk|2

]
(95)

becomes an unsolvable problem as the exact dependence of the
unknown optimal input distribution on {Hk} is intractable.
Purely because of this expression, we need to introduce a
second case distinction on whether ‖Hk‖2 is larger or smaller
than some chosen threshold t. In the derivations below, these
two cases are expressed by the indicator random variable Ak
as Ak = 1 or Ak = 0, respectively. The case of ‖Hk‖2 ≥ t
is then bounded very roughly with the only aim to make sure
that all terms belonging to this case will disappear once we
let t tend to infinity towards the end of the derivation. For the
case of ‖Hk‖2 < t, we can then bound

E
[
‖Hk‖2|Xk|2

∣∣Ak = 0
]
< tE

[
|Xk|2

∣∣Ak = 0
]
. (96)

There are many other places where one has to be very
careful with dependencies. For example, a conditioning on
Bk = 1 cannot simply be dropped even if the expression
only involves the fading process because the fading process
depends via the feedback on the input and therefore also on
Bk.

In many situations, we rely on a graphical tool described
by Massey [11], [12] that allows to figure out whether two
sets of random variables are independent of each other when
conditioned on some more random variables. Note that the
dependencies are often so subtle that it is essential to have a
graphical proof, rather than using hand-waving explanations
and engineering intuition. All these independence investiga-
tions are presented in Appendix A.

B. A Useful Inequality

In the following we will often make use of the following
inequality.

Lemma 9: Let T ≥ 0 be a nonnegative RV and let J ∈
{0, 1} be a related binary indicator RV with Pr[J = 0] = p.
Then

E[T ] ≥ pE[T |J = 0]. (97)

Proof: By the rule of total expectation we have

E[T ] = pE[T |J = 0] + (1− p) E[T |J = 1] (98)
≥ pE[T |J = 0] (99)

where the inequality holds because T is nonnegative.

C. Setup

We start by assuming that there exists a sequence of coding
schemes with

⌊
enRFB,c(Es|{Sk})

⌋
codewords of blocklength n

— i.e., for each n the rate of the code is not larger than
RFB,c(Es|{Sk}) — that all satisfy the average-power constraint
(13) such that the error probability Pr[M 6= M̂ ] tends to zero
as n tends to infinity. Then

H(M) = log
⌊
enRFB,c(Es|{Sk})

⌋
(100)

≥ log
(
enRFB,c(Es|{Sk}) − 1

)
(101)

= nRFB,c(Es|{Sk})− εn (102)



3508 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 6, JUNE 2014

with εn ↓ 0 as n ↑ ∞. Next recall Fano’s inequality [19,
Section 9.6]: Let M take on |M| values. Then

H
(
M
∣∣M̂) ≤ log 2 + Pr

[
M 6= M̂

]
log |M|. (103)

We therefore have

RFB,c(Es|{Sk})

≤ 1

n
H(M) +

εn
n

(104)

=
1

n
I
(
M ; M̂

)
+

1

n
H
(
M
∣∣M̂)+

εn
n

(105)

≤ 1

n
I
(
M ; M̂

)
+

log 2 + Pr
[
M 6= M̂

]
log
⌊
enRFB,c(Es|{Sk})

⌋
n

+
εn
n

(106)

≤ 1

n
I
(
M ; M̂

)
+

log 2

n
+ Pr

[
M 6= M̂

]
RFB,c(Es|{Sk})

+
εn
n

(107)

≤ 1

n
I
(
M ;Yn

1 ,S
n
1

)
+

log 2

n

+ Pr
[
M 6= M̂

]
RFB,c(Es|{Sk}) +

εn
n

(108)

=
1

n

n∑
k=1

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1

)
+

log 2

n

+ Pr
[
M 6= M̂

]
RFB,c(Es|{Sk}) +

εn
n

(109)

=
κ

n

1

κ

κ∑
k=1

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1

)
+

1

n

n∑
k=κ+1

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1

)
+

log 2

n

+ Pr
[
M 6= M̂

]
RFB,c(Es|{Sk}) +

εn
n
. (110)

Here, (104) follows from (102); (106) follows from (103);
and in (108) we apply the data processing inequality [19,
Section 9.6].

We next need the following lemma.
Lemma 10: For the channel model as given in Theorem 4,

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1

)
≤ nR log

(
1 +

1

nR
E
[
‖H0‖2

] Ek
σ2

)
+ I
(
Hk−1

1 ,Sk−1
1 ;Hk,Sk

)
(111)

where Ek denotes the average power of Xk at time k,
averaged over all realizations of message, feedback, and side-
information, i.e.,

Ek , E
[∣∣Xk

(
M,Sk1 ,F

k
1

)∣∣2]. (112)

Proof: See Appendix C.
We apply (111) to the first sum in (110), and use Jensen’s

inequality and stationarity to obtain:

1

κ

κ∑
k=1

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1

)
≤ 1

κ

κ∑
k=1

nR log

(
1 +

1

nR
E
[
‖Hk‖2

] Ek
σ2

)

+
1

κ

κ∑
k=1

h(Hk,Sk)

− 1

κ

κ∑
k=1

h
(
Hk,Sk

∣∣Hk−1
1 ,Sk−1

1

)
(113)

≤ nR log

(
1 +

1

nR
E
[
‖Hk‖2

] 1

κ

κ∑
k=1

Ek
σ2

)
+ h(H0,S0)

− 1

κ
h
(
Hκ

1 ,S
κ
1

)
. (114)

Hence,

RFB,c(Es|{Sk})

≤ κ

n
nR log

(
1 +

1

nR
E
[
‖H0‖2

] 1

κ

κ∑
k=1

Ek
σ2

)
+
κ

n
h(H0,S0)

− 1

n
h(Hκ

1 ,S
κ
1 ) +

log 2

n
+ Pr

[
M 6= M̂

]
RFB,c(Es|{Sk})

+
εn
n

+
1

n

n∑
k=κ+1

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1

)
. (115)

Note that apart from the last term, all terms will tend to zero
as n tends to infinity. We therefore henceforth concentrate
on the terms inside of the sum in (115), i.e., we look at
I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1

)
for κ+ 1 ≤ k ≤ n.

We introduce the indicator random variables Ak defined as

Ak ,

{
1 if ‖Hk‖2 ≥ t
0 otherwise

(116)

for some given t > 0 that will be specified later. Moreover,
we define

αk , Pr[Ak = 1] = Pr
[
‖Hk‖2 ≥ t

]
. (117)

It follows from Markov’s inequality [20, Section 5] that

αk ≤
E
[
‖Hk‖2

]
t

=
E
[
‖H0‖2

]
t

(118)

and therefore (by conditioning that reduces entropy)

H
(
Ak
∣∣Yk−1

1 ,Sk−1
1

)
≤ H(Ak) (119)
= Hb(αk) (120)

≤ Hb

(
E
[
‖H0‖2

]
t

)
(121)

where Hb(·) denotes the binary entropy function (18) and
where we choose t large enough such that

E
[
‖H0‖2

]
t

≤ 1

2
. (122)

We now bound as follows:

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1

)
≤ I
(
M ;Yk,Sk, Ak

∣∣Yk−1
1 ,Sk−1

1

)
(123)

= I
(
M ;Ak

∣∣Yk−1
1 ,Sk−1

1

)
+ I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1 , Ak
)

(124)

= H
(
Ak
∣∣Yk−1

1 ,Sk−1
1

)
− H

(
Ak
∣∣Yk−1

1 ,Sk−1
1 ,M

)︸ ︷︷ ︸
≥ 0
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+ αk I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1 , Ak = 1
)

+ (1− αk)︸ ︷︷ ︸
≤ 1

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1 , Ak = 0
)

(125)

≤ H
(
Ak
∣∣Yk−1

1 ,Sk−1
1

)
+ αknR log

(
1 +

1

nR
E
[
‖H0‖2

∣∣A0 = 1
] Ek
αk σ2

)
+ αkI

(
Hk−1

1 ,Sk−1
1 ;Hk,Sk

∣∣Ak = 1
)

+ I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1 , Ak = 0
)

(126)

≤ Hb

(
E
[
‖H0‖2

]
t

)

+
nR E

[
‖H0‖2

]
t

log

(
1 +

E
[
‖H0‖2

∣∣A0 = 1
]

nR E[‖H0‖2]

tEk
σ2

)

+
E
[
‖H0‖2

]
t

I
(
H−1
−∞,S

−1
−∞;H0,S0

∣∣A0 = 1
)

+ I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1 , Ak = 0
)
. (127)

Here (126) follows from a conditional version of (111) of
Lemma 10 with Ek replaced by Ek/αk because

E
[∣∣Xk

(
M,Sk1 ,F

k
1

)∣∣2∣∣∣Ak = 1
]

≤ 1

αk
E
[∣∣Xk

(
M,Sk1 ,F

k
1

)∣∣2] (128)

=
Ek
αk

(129)

(see Lemma 9); and (127) follows from (121), from (118) and
the monotonicity of αk 7→ αk log(1 + const/αk), and from
stationarity combined with additional random variables in the
argument of mutual information.

Hence,

1

n

n∑
k=κ+1

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1

)
≤ 1

n

n∑
k=1

Hb

(
E
[
‖H0‖2

]
t

)

+
nR E

[
‖H0‖2

]
t · n

n∑
k=1

log

(
1 +

E
[
‖H0‖2

∣∣A0 = 1
]

nR E[‖H0‖2]

tEk
σ2

)

+
E
[
‖H0‖2

]
t

1

n

n∑
k=1

I
(
H−1
−∞,S

−1
−∞;H0,S0

∣∣A0 = 1
)

+
1

n

n∑
k=κ+1

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1 , Ak = 0
)

(130)

≤ Hb

(
E
[
‖H0‖2

]
t

)

+
nR E

[
‖H0‖2

]
t

log

(
1 +

E
[
‖H0‖2

∣∣A0 = 1
]

nR E[‖H0‖2]

tEs

σ2

)

+
E
[
‖H0‖2

]
t

I
(
H−1
−∞,S

−1
−∞;H0,S0

∣∣A0 = 1
)

+
1

n

n− κ
n− κ

n∑
k=κ+1

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1 , Ak = 0
)

(131)

where we have added some nonnegative terms to some of
the sums, used Jensen’s inequality, and relied on the average-
power constraint (13) that guarantees that

1

n

n∑
k=1

Ek ≤ Es. (132)

Hence, combining (131) with (115), we have

RFB,c(Es|{Sk})

≤ κ

n
nR log

(
1 +

1

nR
E
[
‖H0‖2

] 1

κ

κ∑
k=1

Ek
σ2

)
+
κ

n
h(H0,S0)

− 1

n
h
(
Hκ

1 ,S
κ
1

)
+

log 2

n
+ Pr

[
M 6= M̂

]
RFB,c(Es|{Sk})

+
εn
n

+ Hb

(
E
[
‖H0‖2

]
t

)

+
nR E

[
‖H0‖2

]
t

log

(
1 +

E
[
‖H0‖2

∣∣A0 = 1
]

nR E[‖H0‖2]

tEs

σ2

)

+
E
[
‖H0‖2

]
t

I
(
H−1
−∞,S

−1
−∞;H0,S0

∣∣A0 = 1
)

+
1

n

n− κ
n− κ

n∑
k=κ+1

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1 , Ak = 0
)
.

(133)

Next we introduce a second family of indicator random
variables. For some ξmin > 0, we define

Bk ,

{
1 if |X`| ≥ ξmin, ∀ ` = 1, . . . , k

0 otherwise
(134)

and

βk , Pr[Bk = 1|Ak = 0]. (135)

Then

I
(
Bk;Yk

∣∣Sk1 , Ak = 0
)

= H
(
Bk
∣∣Sk1 , Ak = 0

)
− H

(
Bk
∣∣Yk,S

k
1 , Ak = 0

)
(136)

≤ H(Bk|Ak = 0) (137)
= Hb(βk). (138)

Note that in the situation without feedback, it has been shown
in [9] that asymptotically for Es ↑ ∞ the probability βk tends
to 1. We cannot use this result here due to the feedback. It
will turn out, however, that the result still holds.

We now bound each term in the sum in (133) as follows:

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1 , Ak = 0
)

= I
(
M ;Sk

∣∣Yk−1
1 ,Sk−1

1 , Ak = 0
)︸ ︷︷ ︸

= 0, see Fig. 3 in Appendix A

+ I
(
M ;Yk

∣∣Yk−1
1 ,Sk1 , Ak = 0

)
(139)

= I
(
M,Yk−1

1 ;Yk

∣∣Sk1 , Ak = 0
)

− I
(
Yk−1

1 ;Yk

∣∣Sk1 , Ak = 0
)

(140)

≤ I
(
M,Yk−1

1 , Xk,H
k−1
1 ;Yk

∣∣Sk1 , Ak = 0
)

− I
(
Yk−1
k−κ;Yk

∣∣Sk1 , Ak = 0
)

(141)

= I
(
Xk,H

k−1
1 ;Yk

∣∣Sk1 , Ak = 0
)
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+ I
(
M,Yk−1

1 ;Yk

∣∣Xk,H
k−1
1 ,Sk1 , Ak = 0

)︸ ︷︷ ︸
= 0, see Fig. 4 in Appendix A

− I
(
Yk−1
k−κ;Yk

∣∣Sk1 , Ak = 0
)

(142)

≤ I
(
Xk, Bk,H

k−1
1 ;Yk

∣∣Sk1 , Ak = 0
)

− I
(
Yk−1
k−κ;Yk

∣∣Sk1 , Ak = 0
)

(143)

= I
(
Bk;Yk

∣∣Sk1 , Ak = 0
)

+ βk I
(
Xk,H

k−1
1 ;Yk

∣∣Sk1 , Ak = 0, Bk = 1
)

+ (1− βk) I
(
Xk,H

k−1
1 ;Yk

∣∣Sk1 , Ak = 0, Bk = 0
)

− I
(
Yk−1
k−κ;Yk

∣∣Sk1 , Ak = 0
)

(144)

≤ βk I
(
Xk;Yk

∣∣Sk1 , Ak = 0, Bk = 1
)

+ βk I
(
Hk−1

1 ;Yk

∣∣Xk,S
k
1 , Ak = 0, Bk = 1

)
− I
(
Yk−1
k−κ;Yk

∣∣Sk1 , Ak = 0
)

+ Hb(βk)

+ (1− βk) I
(
Xk,H

k−1
1 ;Yk

∣∣Sk1 , Ak = 0, Bk = 0
)

(145)

where in the last inequality we used (138).
We next investigate each of the first three terms in (145)

separately. As a shorthand, we introduce the event

V , {Ak = 0, Bk = 1}. (146)

D. Bound on I
(
Xk;Yk

∣∣Sk1 ,V)
Using the notation Xk , |Xk| eiΦk and introducing IID

random variables {Θk} that are uniformly distributed and
independent of any other random variables, we bound the first
term as follows:

I
(
Xk;Yk

∣∣Sk1 ,V)
≤ I
(
Xk;Yk,HkXk

∣∣Sk1 ,V) (147)

= I
(
Xk;HkXk

∣∣Sk1 ,V)+ I
(
Xk;Yk

∣∣HkXk,S
k
1 ,V

)
(148)

= I
(
Xk; ‖Hk‖|Xk|, Ĥk e

iΦk
∣∣Sk1 ,V)

+ I
(
Xk;Zk

∣∣HkXk,S
k
1 ,V

)︸ ︷︷ ︸
= 0

(149)

= I
(
Xk; ‖Hk‖|Xk|, Ĥk e

iΦk ,Θk

∣∣Sk1 ,V) (150)

= I
(
Xk; ‖Hk‖|Xk|, Ĥk e

i(Φk+Θk),Θk

∣∣Sk1 ,V) (151)

= I
(
Xk; ‖Hk‖|Xk|,Θk

∣∣Sk1 ,V)
+ I
(
Xk; Ĥk e

i(Φk+Θk)
∣∣‖Hk‖|Xk|,Θk,S

k
1 ,V

)
(152)

= I
(
Xk; ‖Hk‖|Xk| eiΘk

∣∣Sk1 ,V)
+ hλ

(
Ĥk e

i(Φk+Θk)
∣∣‖Hk‖|Xk|,Θk,S

k
1 ,V

)
− hλ

(
Ĥk e

i(Φk+Θk)
∣∣‖Hk‖|Xk|,Θk, Xk,S

k
1 ,V

)
(153)

≤ I
(
Xk; ‖Hk‖|Xk| eiΘk

∣∣Sk1 ,V)
+ hλ

(
Ĥk e

i(Φk+Θk)
∣∣Sk1 ,V)

− hλ
(
Ĥk

∣∣‖Hk‖, Xk,S
k
1 ,V

)
(154)

= I
(
Xk; ‖Hk‖|Xk| eiΘk

∣∣Sk1 ,V)+ hλ
(
Ĥk e

iΘk
∣∣Sk1 ,V)

− hλ
(
Ĥk

∣∣‖Hk‖, Xk,S
k
1 ,V

)
. (155)

Here, in (153) we use that both ‖Hk‖|Xk| and Θk can
be recovered from ‖Hk‖|Xk| eiΘk ; and (154) follows from
conditioning that reduces entropy. We next apply a conditional

version of Lemma 2 to the first term in (155) where we
substitute X = Xk and T = ‖Hk‖|Xk| eiΘk :

I
(
Xk; ‖Hk‖|Xk| eiΘk

∣∣Sk1 ,V)
≤ −h

(
‖Hk‖|Xk| eiΘk

∣∣Xk,S
k
1 ,V

)
+ log π + µ log η

+ log Γ

(
µ,
ν

η

)
+ (1− µ) E

[
log
(
‖Hk‖2 |Xk|2 + ν

)∣∣V]
+

1

η
E
[
‖Hk‖2 |Xk|2

∣∣V]+
ν

η
(156)

with free parameters µ, η > 0 and ν ≥ 0. We restrict the
choice of µ further to 0 < µ ≤ 1. Note that (see Lemma 1)

h
(
‖Hk‖|Xk| eiΘk

∣∣Xk,S
k
1 ,V

)
= E

[
log |Xk|2

∣∣V]+ h
(
‖Hk‖ eiΘk

∣∣Xk,S
k
1 ,V

)
(157)

= E
[
log |Xk|2

∣∣V]+ log 2π + h
(
‖Hk‖

∣∣Xk,S
k
1 ,V

)
+ E

[
log ‖Hk‖

∣∣V]. (158)

Moreover, we define

εν,k , sup
r≥ξmin

{
E
[
log
(
‖Hk‖2r2 + ν

)∣∣V]
− E

[
log
(
‖Hk‖2r2

)∣∣V]} (159)

εν , sup
r≥ξmin

{
E
[
log
(
‖H0‖2r2 + ν

)∣∣A0 = 0
]

− E
[
log
(
‖H0‖2r2

)∣∣A0 = 0
]}

(160)

such that

βkεν,k

= sup
r≥ξmin

{
βk E

[
log
(
‖Hk‖2r2 + ν

)∣∣Ak = 0, Bk = 1
]

− βk E
[
log
(
‖Hk‖2r2

)∣∣Ak = 0, Bk = 1
]}

(161)

≤ sup
r≥ξmin

{
βk E

[
log
(
‖Hk‖2r2 + ν

)∣∣Ak = 0, Bk = 1
]

− βk E
[
log
(
‖Hk‖2r2

)∣∣Ak = 0, Bk = 1
]

+ (1− βk) E
[
log
(
‖Hk‖2r2 + ν

)∣∣Ak = 0, Bk = 0
]

− (1− βk) E
[
log
(
‖Hk‖2r2

)∣∣Ak = 0, Bk = 0
]}
(162)

= sup
r≥ξmin

{
E
[
log
(
‖Hk‖2r2 + ν

)∣∣Ak = 0
]

− E
[
log
(
‖Hk‖2r2

)∣∣Ak = 0
]}

(163)

= εν (164)

(where the last equality follows from stationarity), and such
that

(1− µ) E
[
log
(
‖Hk‖2 |Xk|2 + ν

)∣∣V]
= (1− µ) E

[
log
(
‖Hk‖2 |Xk|2

)∣∣V]
+ (1− µ) E

[
log
(
‖Hk‖2 |Xk|2 + ν

)∣∣V]
− (1− µ) E

[
log
(
‖Hk‖2 |Xk|2

)∣∣V] (165)

≤ (1− µ) E
[
log
(
‖Hk‖2 |Xk|2

)∣∣V]+ (1− µ)εν,k (166)

≤ (1− µ) E
[
log ‖Hk‖2

∣∣V]
+ (1− µ) E

[
log |Xk|2

∣∣V]+ εν,k (167)
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where we use that µ ≤ 1 and that conditional on V we have
|Xk| ≥ ξmin.

Plugging this all back into (155) now yields

I
(
Xk;Yk

∣∣Sk1 ,V)
≤ −log 2− h

(
‖Hk‖

∣∣Xk,S
k
1 ,V

)
− E

[
log ‖Hk‖

∣∣V]
+ µ log η + log Γ

(
µ,
ν

η

)
+ (1− µ) E

[
log ‖Hk‖2

∣∣V]
− µE

[
log |Xk|2

∣∣V]+ εν,k +
1

η
E
[
‖Hk‖2 |Xk|2

∣∣V]+
ν

η

+ hλ
(
Ĥk e

iΘk
∣∣Sk1 ,V)− hλ(Ĥk

∣∣‖Hk‖, Xk,S
k
1 ,V

)
(168)

= −log 2− E
[
log ‖Hk‖

∣∣V]+ µ log η + log Γ

(
µ,
ν

η

)
+ (1− µ) E

[
log ‖Hk‖2

∣∣V]− µE
[
log |Xk|2

∣∣V]+ εν,k

+
1

η
E
[
‖Hk‖2 |Xk|2

∣∣V]+
ν

η
+ hλ

(
Ĥk e

iΘk
∣∣Sk1 ,V)

− h
(
Hk

∣∣Xk,S
k
1 ,V

)
+ (2nR − 1) E

[
log ‖Hk‖

∣∣V] (169)

= −log 2 + µ log η + log Γ

(
µ,
ν

η

)
+ (nR − µ) E

[
log ‖Hk‖2

∣∣V]− µE
[
log |Xk|2

∣∣V]
+ εν,k +

1

η
E
[
‖Hk‖2 |Xk|2

∣∣V]+
ν

η

+ hλ
(
Ĥk e

iΘk
∣∣Sk1 ,V)− h(Hk

∣∣Xk,S
k
1 ,V

)
(170)

where in (169) we have made use of Lemma 1 once more.

E. Bound on I
(
Hk−1

1 ;Yk

∣∣Xk,S
k
1 ,V

)
We bound the second term as follows:

I
(
Hk−1

1 ;Yk

∣∣Xk,S
k
1 ,V

)
≤ I
(
Hk−1

1 ;Yk,Hk

∣∣Xk,S
k
1 ,V

)
(171)

= I
(
Hk−1

1 ;Hk

∣∣Xk,S
k
1 ,V

)
+ I

(
Hk−1

1 ;Yk

∣∣Hk, Xk,S
k
1 ,V

)︸ ︷︷ ︸
= 0, see Fig. 5 in Appendix A

(172)

= h
(
Hk

∣∣Xk,S
k
1 ,V

)
− h
(
Hk

∣∣Hk−1
1 , Xk,S

k
1 ,V

)
(173)

= h
(
Hk

∣∣Xk,S
k
1 ,V

)
− h
(
Hk

∣∣Hk−1
1 ,Sk1 , Ak = 0

)
(174)

where the last equality holds because conditional on Hk−1
1

and Sk1 , the input Xk is independent of Hk (see Fig. 6 in
Appendix A).

F. Bound on I
(
Yk−1
k−κ;Yk

∣∣Sk1 , Ak = 0
)

The third term is bounded as follows:

I
(
Yk−1
k−κ;Yk

∣∣Sk1 , Ak = 0
)

= I
(
Yk−1
k−κ, Bk;Yk

∣∣Sk1 , Ak = 0
)

− I
(
Bk;Yk

∣∣Yk−1
k−κ,S

k
1 , Ak = 0

)
(175)

= I
(
Bk;Yk

∣∣Sk1 , Ak = 0
)︸ ︷︷ ︸

≥ 0

+ βk I
(
Yk−1
k−κ;Yk

∣∣Sk1 , Ak = 0, Bk = 1
)

+ (1− βk) I
(
Yk−1
k−κ;Yk

∣∣Sk1 , Ak = 0, Bk = 0
)︸ ︷︷ ︸

≥ 0

−H
(
Bk
∣∣Yk−1

k−κ,S
k
1 , Ak = 0

)
+ H

(
Bk
∣∣Yk

k−κ,S
k
1 , Ak = 0

)︸ ︷︷ ︸
≥ 0

(176)

≥ βk I
(
Yk−1
k−κ;Yk

∣∣Sk1 , Ak = 0, Bk = 1
)

− H(Bk|Ak = 0) (177)
= βk I

(
Yk−1
k−κ;Yk

∣∣Sk1 ,V)− Hb(βk) (178)

= βk I
(
Yk−1
k−κ,Z

k−1
k−κ;Yk

∣∣Sk1 ,V)
− βk I

(
Zk−1
k−κ;Yk

∣∣Yk−1
k−κ,S

k
1 ,V

)︸ ︷︷ ︸
≤ δ2(ξmin,κ)+Hb(βk)

− Hb(βk) (179)

≥ βk I
(
Yk−1
k−κ,Z

k−1
k−κ;Yk

∣∣Sk1 ,V)− δ2(ξmin, κ)

− 2Hb(βk) (180)
= βk I

(
Yk−1
k−κ,Z

k−1
k−κ;Yk,Zk

∣∣Sk1 ,V)
− βk I

(
Yk−1
k−κ,Z

k−1
k−κ;Zk

∣∣Yk,S
k
1 ,V

)︸ ︷︷ ︸
≤ δ3(ξmin,κ)+Hb(βk)

− δ2(ξmin, κ)

− 2Hb(βk) (181)
≥ βk I

(
Yk−1
k−κ,Z

k−1
k−κ;Yk,Zk

∣∣Sk1 ,V)− δ2(ξmin, κ)

− δ3(ξmin, κ)− 3Hb(βk) (182)
= βk I

(
{H`X`}k−1

`=k−κ,Z
k−1
k−κ;HkXk,Zk

∣∣Sk1 ,V)
− δ2(ξmin, κ)− δ3(ξmin, κ)− 3Hb(βk) (183)

= βk I
(
{H`X`}k−1

`=k−κ,Z
k−1
k−κ,Θ

k−1
k−κ;

HkXk,Zk,Θk

∣∣Sk1 ,V)
− δ2(ξmin, κ)− δ3(ξmin, κ)− 3Hb(βk) (184)

= βk I
(
{H`X` e

iΘ`}k−1
`=k−κ,Z

k−1
k−κ,Θ

k−1
k−κ;

HkXk e
iΘk ,Zk,Θk

∣∣Sk1 ,V)
− δ2(ξmin, κ)− δ3(ξmin, κ)− 3Hb(βk) (185)

≥ βk I
(
{H`X` e

iΘ`}k−1
`=k−κ;HkXk e

iΘk
∣∣Sk1 ,V)

− δ2(ξmin, κ)− δ3(ξmin, κ)− 3Hb(βk) (186)
= βk I

(
{H`|X`| eiΘ`}k−1

`=k−κ;Hk|Xk| eiΘk
∣∣Sk1 ,V)

− δ2(ξmin, κ)− δ3(ξmin, κ)− 3Hb(βk). (187)

Here, (177) follows by dropping some nonnegative terms and
by conditioning that reduces entropy; the bounds in (180)
and (182) are derived in Appendix D with δ2(ξmin, κ) and
δ3(ξmin, κ) defined there and shown to tend to 0 as ξmin tends
to infinity; in (184) we add IID and uniformly distributed
random variables Θ` that are independent of all other random
quantities; and in (186) we drop some arguments of the mutual
information functional.

For the first term in (187), we continue as follows:

βkI
(
{H`|X`| eiΘ`}k−1

`=k−κ;Hk|Xk| eiΘk
∣∣Sk1 ,V)

= βk I
({
‖H`‖ |X`|

}k−1

`=k−κ,
{
Ĥ` e

iΘ`
}k−1

`=k−κ;

‖Hk‖ |Xk|, Ĥk e
iΘk
∣∣∣Sk1 ,V) (188)

≥ βk I
({

Ĥ` e
iΘ`
}k−1

`=k−κ; Ĥk e
iΘk
∣∣∣Sk1 ,V) (189)

= βk hλ
(
Ĥk e

iΘk
∣∣Sk1 ,V)

− βk hλ
(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,S
k
1 ,V

)
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± (1− βk) hλ

(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,

Sk1 , Ak = 0, Bk = 0
)

(190)

= βk hλ
(
Ĥk e

iΘk
∣∣Sk1 ,V)

− hλ
(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,S
k
1 , Ak = 0, Bk

)
+ (1− βk) hλ

(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,

Sk1 , Ak = 0, Bk = 0
)

(191)

≥ βk hλ
(
Ĥk e

iΘk
∣∣Sk1 ,V)

− hλ
(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,S
k
k−κ, Ak = 0

)
+ (1− βk) hλ

(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,

Sk1 , Ak = 0, Bk = 0
)
. (192)

Here, in (189), we drop some arguments; and in (192), we
remove some arguments from the conditioning of the second
differential entropy term.

G. Combination of Three Bounds

We combine the three bounds (170), (174), and (192) in
(145) as follows:

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1 , Ak = 0
)

≤ −βk log 2 + βkµ log η + βk log Γ

(
µ,
ν

η

)
+ βk(nR − µ) E

[
log ‖Hk‖2

∣∣V]− βkµE
[
log |Xk|2

∣∣V]
+ βkεν,k +

βk
η

E
[
‖Hk‖2 |Xk|2

∣∣V]+ βk
ν

η

+ βk hλ
(
Ĥk e

iΘk
∣∣Sk1 ,V)− βk h(Hk

∣∣Xk,S
k
1 ,V

)
+ βk h

(
Hk

∣∣Xk,S
k
1 ,V

)
− βk h

(
Hk

∣∣Hk−1
1 ,Sk1 , Ak = 0

)
− βk hλ

(
Ĥk e

iΘk
∣∣Sk1 ,V)

+ hλ

(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,S
k
k−κ, Ak = 0

)
− (1− βk) hλ

(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,

Sk1 , Ak = 0, Bk = 0
)

+ δ2(ξmin, κ) + δ3(ξmin, κ) + 3Hb(βk) + Hb(βk)

+ (1− βk) I
(
Xk,H

k−1
1 ;Yk

∣∣Sk1 , Ak = 0, Bk = 0
)
. (193)

Note that the four underlined terms cancel, that

E
[
log |Xk|2

∣∣V] = E
[
log |Xk|2

∣∣Ak = 0, Bk = 1
]

(194)

≥ log ξ2
min (195)

and that

βk E
[
log ‖Hk‖2

∣∣V]
= βk E

[
log ‖Hk‖2

∣∣Ak = 0, Bk = 1
]

(196)

= E
[
log ‖Hk‖2

∣∣Ak = 0
]

− (1− βk) E
[
log ‖Hk‖2

∣∣Ak = 0, Bk = 0
]
. (197)

Hence, with (164), we get

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1 , Ak = 0
)

≤ hλ
(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,S
k
k−κ, Ak = 0

)
− βk log 2 + nR E

[
log ‖Hk‖2

∣∣Ak = 0
]

− βk h
(
Hk

∣∣Hk−1
1 ,Sk1 , Ak = 0

)
+ βk log Γ

(
µ,
ν

η

)
+
βk
η

E
[
‖Hk‖2 |Xk|2

∣∣Ak = 0, Bk = 1
]

+ βk
ν

η

+ µ
(
βk log η − E

[
log ‖Hk‖2

∣∣Ak = 0
]

+ (1− βk) E
[
log ‖Hk‖2

∣∣Ak = 0, Bk = 0
]

− βk log ξ2
min

)
+ (1− βk)

(
I
(
Xk,H

k−1
1 ;Yk

∣∣Sk1 , Ak = 0, Bk = 0
)

− hλ
(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,

Sk1 , Ak = 0, Bk = 0
)

− nR E
[
log ‖Hk‖2

∣∣Ak = 0, Bk = 0
])

+ 4Hb(βk) + δ2(ξmin, κ) + δ3(ξmin, κ) + εν . (198)

Next, we bound

(1− βk) E
[
log ‖Hk‖2

∣∣Ak = 0, Bk = 0
]

≤ (1− βk) log E
[
‖Hk‖2

∣∣Ak = 0, Bk = 0
]

(199)

≤ (1− βk) log
E
[
‖Hk‖2

∣∣Ak = 0
]

1− βk
(200)

= (1− βk) log E
[
‖Hk‖2

∣∣Ak = 0
]

− (1− βk) log(1− βk) (201)
≤ (1− βk) log E

[
‖Hk‖2

∣∣Ak = 0
]

+ e−1 (202)

≤ (1− βk) log
(
2 E
[
‖Hk‖2

])
+ e−1 (203)

where (199) follows from Jensen’s inequality, where (200)
follows from Lemma 9, and where (203) can be derived from
Lemma 9 and (122) as follows:

E
[
‖Hk‖2

∣∣Ak = 0
]
≤ 1

1− αk
E
[
‖Hk‖2

]
(204)

≤ 1

1− 1
2

E
[
‖Hk‖2

]
(205)

= 2 E
[
‖Hk‖2

]
. (206)

Furthermore, using that conditional on Ak = 0 we have
‖Hk‖2 ≤ t and relying once more on Lemma 9 and (122),
we obtain

βk
η

E
[
‖Hk‖2 |Xk|2

∣∣Ak = 0, Bk = 1
]

≤ 1

η
E
[
‖Hk‖2 |Xk|2

∣∣Ak = 0
]

(207)

≤ t

η
E
[
|Xk|2

∣∣Ak = 0
]

(208)

≤ t

η

1

1− αk
E
[
|Xk|2

]
(209)

≤ 2t

η
E
[
|Xk|2

]
. (210)
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Moreover, we bound

−βk h
(
Hk

∣∣Hk−1
1 ,Sk1 , Ak = 0

)
= −h

(
Hk

∣∣Hk−1
1 ,Sk1 , Ak = 0

)
+ (1− βk) h

(
Hk

∣∣Hk−1
1 ,Sk1 , Ak = 0

)
(211)

≤ −h
(
Hk

∣∣Hk−1
1 ,Sk1 , Ak = 0

)
+ (1− βk) h(Hk|Ak = 0). (212)

Finally, the following bound is proven in Appendix E:

I
(
Xk,H

k−1
1 ;Yk

∣∣Sk1 , Ak = 0, Bk = 0
)

− hλ
(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,S
k
1 , Ak = 0, Bk = 0

)
− nR E

[
log ‖Hk‖2

∣∣Ak = 0, Bk = 0
]

≤ −4nRh
(
H0

∣∣H−1
−∞,S

0
−∞, A0 = 0

)
+

4nR(nR + 1)

e

− hλ
(
Ĥ0 e

iΘ0

∣∣∣H−1
−∞,S

0
−∞, A0 = 0

)
+

16nRπ
nR

Γ(nR)(4nR − 1)2
+ 4n2

R log

(
1 +

2πe

nR

E
[
‖H0‖2

]
1− βk

)

+ nR log

(
1 +

2ξ2
min

nR σ2

E
[
‖H0‖2

]
1− βk

)
. (213)

Hence, using all these bounds in (198), we obtain

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1 , Ak = 0
)

≤ hλ
(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,S
k
k−κ, Ak = 0

)
− log 2 + nR E

[
log ‖Hk‖2

∣∣Ak = 0
]

− h
(
Hk

∣∣Hk−1
1 ,Sk1 , Ak = 0

)
+ (1− βk) log 2

+ (1− βk) h(Hk|Ak = 0) + βk log Γ

(
µ,
ν

η

)
+

2t

η
E
[
|Xk|2

]
+ βk

ν

η

+ µ
(
βk log η − E

[
log ‖Hk‖2

∣∣Ak = 0
]

+ (1− βk) log
(
2 E
[
‖Hk‖2

])
+ e−1 − βk log ξ2

min

)
+ (1− βk)

(
−4nRh

(
H0

∣∣H−1
−∞,S

0
−∞, A0 = 0

)
+

4nR(nR + 1)

e
+

16nRπ
nR

Γ(nR)(4nR − 1)2

− hλ
(
Ĥ0 e

iΘ0

∣∣∣H−1
−∞,S

0
−∞, A0 = 0

))

+ (1− βk)4n2
R log

(
1 +

2πe

nR

E
[
‖H0‖2

]
1− βk

)

+ (1− βk)nR log

(
1 +

2ξ2
min

nR σ2

E
[
‖H0‖2

]
1− βk

)
+ 4Hb(βk) + δ2(ξmin, κ) + δ3(ξmin, κ) + εν . (214)

We next bound the first four terms as follows:

hλ

(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,S
k
k−κ, Ak = 0

)
− log 2

+ nR E
[
log ‖Hk‖2

∣∣Ak = 0
]
− h
(
Hk

∣∣Hk−1
1 ,Sk1 , Ak = 0

)
=

1

1− αk

(
hλ

(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,S
k
k−κ, Ak

)
− log 2 + nR E

[
log ‖Hk‖2

]
− h
(
Hk

∣∣Hk−1
1 ,Sk1 , Ak

))
− αk

1− αk

(
hλ

(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,S
k
k−κ,

Ak = 1
)

− log 2 + nR E
[
log ‖Hk‖2

∣∣Ak = 1
]

− h
(
Hk

∣∣Hk−1
1 ,Sk1 , Ak = 1

))
(215)

≤ 1

1− αk

(
hλ

(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,S
k
k−κ

)
− log 2

+ nR E
[
log ‖Hk‖2

]
− h
(
Hk

∣∣Hk−1
1 ,Sk1

))
+

1

1− αk
I
(
Ak;Hk

∣∣Hk−1
1 ,Sk1

)
− αk

1− αk

(
hλ

(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,S
k
k−κ,

Ak = 1
)

− log 2 + nR E
[
log ‖Hk‖2

∣∣Ak = 1
]

− h
(
Hk

∣∣Ak = 1
))

(216)

≤ 1

1− αk

(
hλ

(
Ĥ0 e

iΘ0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ,S
0
−κ

)
− log 2

+ nR E
[
log ‖H0‖2

]
− h
(
H0

∣∣H−1
−∞,S

0
−∞
))

+
1

1− αk
Hb(αk)

+
αk

1− αk

∣∣∣∣hλ(Ĥ0 e
iΘ0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ,S
0
−κ, A0 = 1

)
− log 2 + nR E

[
log ‖H0‖2

∣∣A0 = 1
]

− h
(
H0

∣∣A0 = 1
)∣∣∣∣ (217)

≤ 1

1− δ4(t, κ)

(
hλ

(
Ĥ0 e

iΘ0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ,S
0
−κ

)
− log 2 + nR E
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∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ,S
0
−κ, A0 = 1

)
− log 2 + nR E

[
log ‖H0‖2

∣∣A0 = 1
]

− h
(
H0

∣∣A0 = 1
)∣∣∣∣. (218)

Here, (215) rewrites the expression with respect to Ak; in
(216) we drop terms in the conditioning of the first and the
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last differential entropy term; (217) follows from stationarity
plus adding some conditioning, from taking the absolute value,
and from dropping a nonnegative entropy term; and the last
inequality (218) we rely on (118), (121), αk ≤ 1

2 , and define

δ4(t, κ)

,
E
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}
(219)

where I {statement} denotes the indicator function that takes
on the value one if the statement holds true and zero otherwise.
Note that limt↑∞ δ4(t, κ) = 0.

Hence, using this in (214) and applying stationarity where
possible, we have
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M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1 , Ak = 0
)

≤ 1

1− δ4(t, κ)

(
hλ

(
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We now define

βn,κ ,
1

n− κ

n∑
k=κ+1

βk (221)

and note that βk 7→ (1−βk) log
(
1+const/(1−βk)

)
and Hb(·)

are concave such that by Jensen’s inequality
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and

1
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n∑
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Moreover, by adding some nonnegative terms and using the
average-power constraint (13),
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≤ n
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Es. (226)

Plugging (220) back into its corresponding summation from
(133) hence yields:
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∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ,S
0
−κ, A0 = 1

)
− log 2 + nR E

[
log ‖H0‖2

∣∣A0 = 1
]

− h
(
H0

∣∣A0 = 1
)∣∣∣∣

+ (1− βn,κ) log 2 + (1− βn,κ) h(H0|A0 = 0)

+ βn,κ log Γ

(
µ,
ν

η

)
+

2t

η

n

n− κ
Es + βn,κ

ν

η

+ µ
(
βn,κ log η − E

[
log ‖H0‖2

∣∣A0 = 0
]

+ (1− βn,κ) log
(
2 E
[
‖H0‖2

])
+ e−1

− βn,κ log ξ2
min

)
+ (1− βn,κ)

(
−4nRh

(
H0

∣∣H−1
−∞,S

0
−∞, A0 = 0

)
+

4nR(nR + 1)

e
+

16nRπ
nR

Γ(nR)(4nR − 1)2



MOSER: IMPACT OF FEEDBACK AND SIDE-INFORMATION ON THE ASYMPTOTIC CAPACITY OF SIMO FADING CHANNELS 3515
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(228)

where in the last step we take the supremum over βn,κ ∈ [0, 1].
Next, we plug (228) back into (133) and let n tend to

infinity:
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We make the following choice for the free parameters µ, η, t,
and ξmin:

µ ,
ν

log Es
(230)

η ,
Es log2 Es

ν
(231)

t , log2 Es (232)
ξmin ,

√
log log Es (233)

for some fixed value ν > 0, and for Es large enough such
that µ ≤ 1. Note that then inside the supremum, the term
β log Γ(µ, ν/η) grows like β log log Es, while one more term
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grows like (1− β) log log log Es and the rest is bounded from
above in Es. Hence, for any Es larger than some threshold,
β log Γ(µ, ν/η) becomes the dominant term and the supremum
is therefore achieved for β = 1.

Note that the bound (229) holds for any system, hence also
for an optimal system. So we can use (229) to upper-bound
the asymptotic feedback capacity with causal side-information
at transmitter and receiver:
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where we have used that [6, Appendix XI]
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Note further that
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{
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}
= 0. (238)

Hence, by choosing κ very large and ν very small, we see that
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VII. AN UPPER BOUND ON THE FADING NUMBER WITH
FEEDBACK AND ACAUSAL SIDE-INFORMATION

This derivation is very similar to the one given in Sec-
tion VI. We will therefore only point out the main differences
and omit many details.

We start with (108):
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Lemma 10 is adapted as follows.
Lemma 11: In the case of acausal side-information, Lem-

ma 10 reads
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Proof: Omitted.
Applied to the first sum in (242) this yields
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such that
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The expression (133) is then adapted as follows:
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The derivation of the bound on I
(
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is completely analogous to (134)–(228). After having n
tending to infinity, we end up with
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+ δ̃2(ξmin, κ) + δ̃3(ξmin, κ) + εν

+ sup
0≤β≤1

{
(1− β) log 2 + (1− β) h(H0|A0 = 0)

+ β log Γ

(
µ,
ν

η

)
+ β

ν

η

+ µ
(
β log η − E

[
log ‖H0‖2

∣∣A0 = 0
]

+ (1− β) log
(
2 E
[
‖H0‖2

])
+ e−1

− β log ξ2
min

)
− (1− β) 4nR h

(
H0

∣∣H−1
−∞,S

∞
−∞, A0 = 0

)
+ (1− β)

4nR(nR + 1)

e

+ (1− β)
16nRπ

nR

Γ(nR)(4nR − 1)2

− (1− β) hλ

(
Ĥ0 e

iΘ0

∣∣∣H−1
−∞,S

0
−∞, A0 = 0

)
+ (1− β) 4n2

R log

(
1 +

2πe

nR

E
[
‖H0‖2

]
1− β

)

+ (1− β) nR log

(
1 +

2ξ2
min

nR σ2

E
[
‖H0‖2

]
1− β

)

+ 4Hb(β)

}
(248)

where δ̃2(ξmin, κ), δ̃3(ξmin, κ), and δ̃4(t, κ) are correspondingly
adapted versions of δ2(ξmin, κ), δ3(ξmin, κ), and δ4(t, κ), re-
spectively.

Before we conclude the proof in the same manner as in
(234)–(239) using the same choice of the free parameters as
given in (230)–(233), we point out that by an argument based
on the tool of Appendix A, one can show that

hλ

(
Ĥ0 e

iΘ0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ,S
κ
−κ

)
= hλ

(
Ĥ0 e

iΘ0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−κ,S
0
−κ

)
(249)

and

h
(
H0

∣∣H−1
−∞,S

∞
−∞
)

= h
(
H0

∣∣H−1
−∞,S

0
−∞
)
. (250)

Hence, we end up with the following upper bound on the
fading number with feedback and acausal side-information at
the transmitter:

χFB,ac({Hk}|{Sk})
≤ hλ

(
Ĥ0 e

iΘ0

∣∣∣{Ĥ` e
iΘ`
}−1

`=−∞,S
0
−∞

)
− log 2

+ nR E
[
log ‖H0‖2

]
− h
(
H0

∣∣H−1
−∞,S

0
−∞
)
. (251)

VIII. UPPER BOUNDS ON THE PRELOG WITH FEEDBACK

In this section, we focus on a SISO nonregular Gaussian
fading process {Hk} with {Hk − d} being a zero-mean, unit-
variance, stationary, circularly symmetric, Gaussian process of
arbitrary spectral distribution function F(λ), − 1

2 < λ ≤ 1
2 , and

with d ∈ C denoting the spectral component. Again we allow
a noiseless, but delayed feedback link from the receiver back
to the transmitter. As input constraint we only consider the
peak-power constraint (14).
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We start as in Section VI-C with Fano’s inequality:

Rpp
FB(Es) ≤

1

n
I
(
M ;Y n1

)
+

log 2

n

+ Pr
[
M 6= M̂

]
Rpp

FB(Es) +
εn
n

(252)

=
1

n

n∑
k=1

I
(
M ;Yk

∣∣Y k−1
1

)
+

log 2

n

+ Pr
[
M 6= M̂

]
Rpp

FB(Es) +
εn
n
. (253)

Next we bound each term in the sum separately:

I
(
M ;Yk

∣∣Y k−1
1

)
≤ I
(
M,Xk

1 ;Yk
∣∣Y k−1

1

)
(254)

= I
(
Xk

1 ;Yk
∣∣Y k−1

1

)
+ I
(
M ;Yk

∣∣Y k−1
1 , Xk

1

)︸ ︷︷ ︸
= 0

(255)

= I
(
Xk

1 ;Yk
∣∣Y k−1

1

)
(256)

≤ I
(
Xk

1 , Y
k−1
1 ;Yk

)
(257)

= I(Xk;Yk) + I
(
Xk−1

1 , Y k−1
1 ;Yk

∣∣Xk

)
(258)

where (256) can be shown using the tool from Appendix A
(see Fig. 9). The second term in (258) is bounded as follows:

I
(
Xk−1

1 , Y k−1
1 ;Yk

∣∣Xk

)
≤ I
(
Xk−1

1 , Y k−1
1 ;Yk, Hk

∣∣Xk

)
(259)

= I
(
Xk−1

1 , Y k−1
1 ;Hk

∣∣Xk

)
+ I

(
Xk−1

1 , Y k−1
1 ;Yk

∣∣Hk, Xk

)︸ ︷︷ ︸
= 0

(260)

= I
(
Xk−1

1 , Y k−1
1 ;Hk

∣∣Xk

)
(261)

= h(Hk|Xk)− h
(
Hk

∣∣Y k−1
1 , Xk

1

)
(262)

= h(Hk|Xk)− EXk1
[
h
(
Hk

∣∣Y k−1
1 , {X` = x`}k`=1

)]
(263)

= h(Hk|Xk)− EXk1
[
h
(
Hk

∣∣{H`x` + Z`}k−1
`=1

)]
(264)

≤ h(Hk)− inf
x` : |x`|≤

√
Es

`=1,...,k−1

h
(
Hk

∣∣{H`x` + Z`}k−1
`=1

)
(265)

= h(Hk)− inf
x` : |x`|≤

√
Es

`=1,...,k−1

h

(
Hk

∣∣∣∣∣
{
H` +

Z`
x`

}k−1

`=1

)
(266)

= h(Hk)− h

(
Hk

∣∣∣∣∣
{
H` +

Z`√
Es

}k−1

`=1

)
(267)

= I

({
H` +

Z`√
Es

}k−1

`=1

;Hk

)
(268)

≤ I

({
H` +

Z`√
Es

}k−1

`=−∞
;Hk

)
(269)

= log
1

ε2pred

(
σ2

Es

) . (270)

Note that in (264) we use the fact that conditional on the past
outputs Y k−1

1 , the current fading Hk is independent of the
inputs Xk

1 . In (265), we bound by dropping some conditioning
argument and by replacing an expectation by an infimum; and
(267) holds because the infimum is achieved for x` =

√
Es

(and an arbitrary phase since Z` is circularly symmetric).

In (270), ε2pred(δ2) denotes the noisy prediction error as
described in [7, Equation (11)]: When predicting H0 based
on the noisy observations

H−1 +W−1, H−2 +W−2, H−3 +W−3, . . . (271)

where {Wk} is a sequence of random variables that are IID ∼
NC
(
0, δ2

)
, an optimal predictor will achieve a mean-squared

error

ε2pred(δ2) = exp

(∫ 1
2

− 1
2

log
(
F′(λ) + δ2

)
dλ

)
− δ2. (272)

Hence, we have

Rpp
FB(Es) ≤

1

n

n∑
k=1

I(Xk;Yk) + log
1

ε2pred

(
σ2

Es

) +
log 2

n

+ Pr
[
M 6= M̂

]
Rpp

FB(Es) +
εn
n
. (273)

It only remains to show that the first term grows like log log Es.
This basically follows from the upper bound given in Sec-
tion VI. Unfortunately, we need to be careful with the order
of limits. So, to avoid any hand-waving arguments, we derive
a rough bound showing a double-logarithmic growth (where
we not need to worry about the correct second-order terms).

Similarly to Section VI-C, we introduce an indicator random
variable Bk,

Bk ,

{
1 if |Xk| ≥ ξmin

0 otherwise
(274)

with βk , Pr[Bk = 1], and obtain

I(Xk;Yk) ≤ I(Xk, Bk;Yk) (275)
= I(Bk;Yk) + I(Xk;Yk|Bk) (276)
≤ Hb(βk) + βk I(Xk;Yk|Bk = 1)

+ (1− βk) I(Xk;Yk|Bk = 0). (277)

The last term we bound as follows:

I(Xk;Yk|Bk = 0)

= h(Yk|Bk = 0)− h(Yk|Xk, Bk = 0) (278)
≤ log

(
πe
(
E
[
|Hk|2

∣∣Bk = 0
]
ξ2

min + σ2
))

− h(Yk|Xk, HkXk, Bk = 0)︸ ︷︷ ︸
= log(πeσ2)

(279)

= log

(
1 + E

[
|Hk|2

∣∣Bk = 0
]ξ2

min

σ2

)
(280)

≤ log

(
1 +

E
[
|Hk|2

]
1− βk

ξ2
min

σ2

)
(281)

where the last inequality follows from Lemma 9.
To bound the second term in (277), we now rely on a

conditional version of Lemma 2 with X = Xk and T = Yk
and with the choice ν = 0 and µ ≤ 1:

I(Xk;Yk|Bk = 1)

≤ −h(Yk|Xk, Bk = 1) + log π + µ log η + log Γ(µ)

+ (1− µ) E
[
log |Yk|2

∣∣Bk = 1
]

+
1

η
E
[
|Yk|2

∣∣Bk = 1
]
(282)
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= −EXk
[

log
(
πe
(
E
[
|Hk|2

∣∣Xk = xk, Bk = 1
]
|Xk|2 + σ2

))∣∣∣Bk = 1
]

+ log π + µ log η + log Γ(µ)

+ (1− µ) E
[
log |HkXk + Zk|2

∣∣Bk = 1
]

+
1

η
E
[
|HkXk + Zk|2

∣∣Bk = 1
]

(283)

= −EXk

[
log

(
E
[
|Hk|2

∣∣Xk = xk, Bk = 1
]︸ ︷︷ ︸

≥ 0

+
σ2

|Xk|2

)
∣∣∣∣Bk = 1

]
− 1− E

[
log |Xk|2

∣∣Bk = 1
]

+ µ log η + log Γ(µ)

+ (1− µ) E
[
log |Xk|2

∣∣Bk = 1
]

+ (1− µ) E

[
log

∣∣∣∣Hk +
Zk
Xk

∣∣∣∣2
∣∣∣∣∣Bk = 1

]

+
1

η
E
[
|Hk|2|Xk|2

∣∣Bk = 1
]

+
σ2

η
(284)

≤ −1− log

(
σ2

ξ2
min

)
+ µ log η + log Γ(µ)

− µE
[
log |Xk|2

∣∣Bk = 1
]

+ (1− µ) log E
[
|Hk|2 +

|Zk|2

ξ2
min

∣∣∣∣Bk = 1

]
+

1

η
E
[
|Hk|2

∣∣Bk = 1
]
Es +

σ2

η
(285)

≤ −1− log σ2 + µ log η + log Γ(µ) + (1− µ) log ξ2
min

+ (1− µ) log

(
E
[
|Hk|2

]
βk

+
σ2

ξ2
min

)
+

Es E
[
|Hk|2

]
ηβk

+
σ2

η
. (286)

Here, (282) follows from Lemma 2; in (285), we use Jensen’s
inequality and the fact that conditional on Bk = 1, we have
ξ2

min ≤ |Xk|2 ≤ Es; and in (286), we again use |Xk|2 ≥ ξ2
min

(conditional on Bk = 1) and we apply Lemma 9.
Hence, from (277), (281), and (286), and taking the supre-

mum over βk, we finally obtain

I(Xk;Yk) ≤ sup
0≤β≤1

{
(1− β) log

(
1 +

E
[
|H0|2

]
1− β

ξ2
min

σ2

)
+Hb(β)− β − β log σ2 + βµ log η

+ β log Γ(µ) + β(1− µ) log ξ2
min

+ β(1− µ) log

(
E
[
|H0|2

]
β

+
σ2

ξ2
min

)

+
Es E

[
|H0|2

]
η

+
βσ2

η

}
. (287)

Note that (due to stationarity) this expression does not depend
on k or n anymore. So, plugging this back into (273) and
letting n tend to infinity, we obtain

Rpp
FB(Es) ≤ sup

0≤β≤1

{
(1− β) log

(
1 +

E
[
|H0|2

]
1− β

ξ2
min

σ2

)

+Hb(β)− β − β log σ2 + βµ log η

+ β log Γ(µ) + β(1− µ) log ξ2
min

+ β(1− µ) log

(
E
[
|H0|2

]
β

+
σ2

ξ2
min

)

+
Es E

[
|H0|2

]
η

+
βσ2

η

}
+ log

1

ε2pred

(
σ2

Es

) . (288)

Choosing

µ ,
1

log Es
(289)

η , Es log Es (290)
ξmin ,

√
log log Es (291)

and using the same argument as in Section VI-G, we see that
for Es large enough, the supremum is achieved for β = 1.
Hence,

Rpp
FB(Es)

≤ −1− log σ2 + 1 +
log log Es

log Es
+ log Γ

(
1

log Es

)
+

(
1− 1

log Es

)(
log log log Es

+ log

(
E
[
|H0|2

]
+

σ2

log log Es

))
+

E
[
|H0|2

]
log Es

+
σ2

Es log Es
+ log

1

ε2pred

(
σ2

Es

) (292)

= log log Es + log log log Es +O(1) + log
1

ε2pred

(
σ2

Es

) . (293)

Here, O(1) expresses some unspecified terms that are bounded
in Es, and we used that

log Γ

(
1

log Es

)
= log log Es + o(1) (294)

where o(1) represent terms that tend to zero as Es tends to
infinity. Note that this upper bound holds for any system, i.e.,
it also holds for a capacity-achieving system. Hence, we have
succeeded in deriving a bound similar to [7, Equation (48)]
(it contains an additional term log log log Es). Note that under
the assumption that

lim
δ2↓0

ε2pred(δ2)

δ2
=∞ (295)

we have

log
1

ε2pred

(
σ2

Es

) +O(1) = log
1

ε2pred

(
σ2

Es

)
+ σ2

Es

+O(1) (296)

(compare with [7, Equation (54)]).
Next, we will derive an upper bound that is tight for very

small errors when predicting the actual fading level from noisy
observations of its past. To that end note that Cpp

FB(Es) is
always upper-bounded by the achievable rate in the case when
both receiver and transmitter have perfect knowledge about
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Fig. 2. The causality graph of the causal-order expansion given in (303).

the actual fading realization. In such a situation the channel
appears memoryless and therefore feedback does not increase
capacity. Note that since a peak-power constraint is in effect,
there is no water-filling possible, but in an optimal scheme, the
transmitter will transmit always with highest allowed power
Es. Thus

Cpp
FB(Es) ≤ RPSI@Tx(Es) (297)

≤ E
[
log

(
1 +

Es · |Hk|2

σ2

)]
(298)

≤ log

(
1 +

Es · E
[
|Hk|2

]
σ2

)
(299)

= log

(
1 +

(
|d|2 + 1

) Es

σ2

)
(300)

= log
Es

σ2
+ log

(
|d|2 + 1

)
+ o(1) (301)

where in (298) we upper-bound further by allowing Gaussian
inputs (that are not peak-limited). The bound (301) is identical
to [7, Equation (49)].

Furthermore note that any lower bound on the capacity
without feedback trivially also is a lower bound on the capacity
with feedback, i.e., the lower bounds given in [7, Section VI]
continue to hold in our context. Hence, we can now easily
adapt the derivations of [7, Section VIII] to the situation with
noiseless feedback, such that the results given in [7] also hold
in the case with noiseless feedback.

APPENDIX A
INDEPENDENCE AND CAUSALITY

In [11], [12], James L. Massey introduces a way of graphi-
cally determining independence of random variables based on
causal interpretations. A causal interpretation is an ordered

list of random variables, where the choice of a specific order
is based on the causality of the system. Loosely speaking,
we like to think of some random variables being generated
“first” and some “later based on the first.” Note that a priori
every ordered list is a valid causal interpretation, but some
choices will be more useful than others keeping in mind the
engineering understanding of causality.

In our case of the random variables depicted in Fig. 1(
M,Xk

1 ,Y
k
1 ,H

k
1 ,Z

k
1 ,S

k
1 ,F

k
1

)
(302)

we choose the following causal interpretation:

(M,Z1, . . . ,Zk,S1,H1,S2,H2, . . . ,Sk,Hk,

F1, X1,Y1,F2, X2,Y2, . . . ,Fk, Xk,Yk). (303)

For some given sets A, B, and C of random variables, we
now would like to know whether A is independent of B when
conditioned on C. In order to answer this question, we make
use of the “Markov structure” of the random variables given
by the causal interpretation of the system. For example, for
(303), we think of
• M being generated independently;
• Z1 being generated independently;

...
• Zk being generated independently;
• S1 being generated independently;
• H1 being generated based on S1;
• S2 being generated based on S1;
• H2 being generated based on H1,S

2
1;

...
• Sk being generated based on Sk−1

1 ;
• Hk being generated based on Hk−1

1 ,Sk1 ;
• F1 being generated independently;
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Fig. 3. The causally relevant subgraph of (303) showing the independence
of M and Sk when conditioned on

(
Yk−1

1 ,Sk−1
1

)
.

• X1 being generated based on M,F1,S1;
• Y1 being generated based on X1,H1,Z1;
• F2 being generated based on Y1,S1;
• X2 being generated based on M,F2,S2;
• Y2 being generated based on X2,H2,Z2;

...
• Fk being generated based on Yk−1

1 ,Sk−1
1 ;

• Xk being generated based on M,Fk,Sk; and
• Yk being generated based on Xk,Hk,Zk.

Massey calls this a causal-order expansion of (302). It can
easily be depicted graphically in a causality graph, which is
a directed graph with an edge from vertex Vi to Vj if, and
only if, the generation of Vj is directly based on Vi. For the
example (303) the corresponding graph is shown in Fig. 2.

In order to prove the independence of A and B when
conditioned on C, we then consider the subgraph of Fig. 2
that is causally relevant to A ∪ B ∪ C, i.e., we consider only
nodes (and the corresponding edges stemming from them) that
are either member of A∪B∪C or causally prior to A∪B∪C.
Then we delete all edges leaving any component of C. If now
all components of A are unconnected (when the edges are
considered without direction) to the components of B, the
conditional independence is proven. Note that this graphical
proof only constitutes a sufficient condition for independence,
i.e., if the proof fails, then this does not imply that A and B
must be conditionally dependent conditional on C.

In Figs. 3–13, several independence claims are proven that
are used in this paper and that are based on the causal
interpretation (303).

APPENDIX B
PROOF OF LEMMA 8

We derive the following bound:

I
(
Xk;Zk−1

k−κ,Z
k+κ
k+1

∣∣Yk+κ
k−κ,S

k+κ
k−κ, X

k−1
k−κ

)
≤ I
(
Xk;Zk+κ

k−κ
∣∣Yk+κ

k−κ,S
k+κ
k−κ, X

k−1
k−κ

)
(304)

= h
(
Zk+κ
k−κ

∣∣Yk+κ
k−κ,S

k+κ
k−κ, X

k−1
k−κ

)
− h
(
Zk+κ
k−κ

∣∣Yk+κ
k−κ,S

k+κ
k−κ, X

k
k−κ

)
(305)
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Fig. 4. The causally relevant subgraph of (303) showing the independence
of

(
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and Yk when conditioned on
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)
.
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Fig. 5. The causally relevant subgraph of (303) showing the independence
of Yk and Hk−1

1 when conditioned on
(
Xk,Hk,S

k
1

)
.

≤ h
(
Zk+κ
k−κ

)
− h
(
Zk+κ
k−κ

∣∣Yk+κ
k−κ,S

k+κ
k−κ, X

k+κ
k−κ

)
(306)

= h
(
Zk+κ
k−κ

)
− h

(
Zk+κ
k−κ

∣∣∣∣∣
{
H` +

Z`
X`

}k+κ

`=k−κ
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k−κ, X
k+κ
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(307)

≤ h
(
Zk+κ
k−κ

)
− inf

x` : |x`|≥xmin
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(
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Z`
x`
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(308)

= h
(
Zk+κ
k−κ

)
− h
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Zk+κ
k−κ

∣∣∣∣∣
{
H` +

Z`
xmin

}k+κ

`=k−κ
,Sk+κ

k−κ

)
(309)

= I

(
Zk+κ
k−κ;

{
H` +

Z`
xmin

}k+κ

`=k−κ
,Sk+κ

k−κ

)
(310)

= I

({
Z`
xmin

}k+κ

`=k−κ
;

{
H` +

Z`
xmin

}k+κ

`=k−κ

∣∣∣∣∣Sk+κ
k−κ

)
(311)

= I

({
Z`
xmin

}κ
`=−κ

;

{
H` +

Z`
xmin

}κ
`=−κ

∣∣∣∣∣Sκ−κ
)

(312)

= h

({
H` +

Z`
xmin

}κ
`=−κ

∣∣∣∣∣Sκ−κ
)
− h
(
Hκ
−κ
∣∣Sκ−κ) (313)

, δ1(xmin, κ). (314)
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Fig. 6. The causally relevant subgraph of (303) showing the independence
of Xk and Hk when conditioned on

(
Hk−1

1 ,Sk1
)
.
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Fig. 7. The causally relevant subgraph of (303) showing the independence
of Sk and M when conditioned on

(
Yk−1

1 , Xk−1
1 ,Sk−1

1

)
.

Here (304) follows from adding Zk to the arguments of
the mutual information; (306) follows from conditioning that
reduces entropy; in (308) we replace the expectation over
Xk+κ
k−κ by a corresponding minimization; for (309) we note

that the minimum is achieved for x` = xmin; and (312) follows
from stationarity.

From [6, Lemma 6.11], [15, Lemma A.19] we conclude that
the expression

h

({
H` +

Z`
xmin

}κ
`=−κ

∣∣∣∣∣Sκ−κ
)

(315)

converges monotonically in xmin to h
(
Hκ
−κ
∣∣Sκ−κ).

APPENDIX C
PROOF OF LEMMA 10

By the chain rule, we have

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1

)
= I
(
M ;Sk

∣∣Yk−1
1 ,Sk−1

1

)
+ I
(
M ;Yk

∣∣Yk−1
1 ,Sk1

)
(316)

where for the first term we obtain

I
(
M ;Sk

∣∣Yk−1
1 ,Sk−1

1

)
≤ I
(
M,Xk−1

1 ;Sk
∣∣Yk−1

1 ,Sk−1
1

)
(317)

= I
(
Xk−1

1 ;Sk
∣∣Yk−1

1 ,Sk−1
1

)
(318)
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Fig. 8. The causally relevant subgraph of (303) showing the independence
of Sk and

(
Xk−1

1 ,Yk−1
1

)
when conditioned on

(
Hk−1

1 ,Sk−1
1

)
.
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Fig. 9. The causally relevant subgraph of (303) showing the independence
of Yk and M when conditioned on

(
Yk−1

1 , Xk
1 ,S

k
1

)
.

= I
(
Xk−1

1 ,Yk−1
1 ;Sk

∣∣Sk−1
1

)
− I
(
Yk−1

1 ;Sk
∣∣Sk−1

1

)︸ ︷︷ ︸
≥ 0

(319)

≤ I
(
Xk−1

1 ,Yk−1
1 ,Hk−1

1 ;Sk
∣∣Sk−1

1

)
(320)

= I
(
Hk−1

1 ;Sk
∣∣Sk−1

1

)
+ I
(
Xk−1

1 ,Yk−1
1 ;Sk

∣∣Hk−1
1 ,Sk−1

1

)
(321)

= I
(
Hk−1

1 ;Sk
∣∣Sk−1

1

)
. (322)

Here (317) and (320) follow from adding an additional argu-
ment to the mutual information functional, and (318) and (322)
are proven in Appendix A (see Figs. 7 and 8, respectively).

We bound the second term in (316) as follows:

I
(
M ;Yk

∣∣Yk−1
1 ,Sk1

)
= h

(
Yk

∣∣Yk−1
1 ,Sk1

)
− h
(
Yk

∣∣Yk−1
1 ,Sk1 ,M

)
(323)

= h
(
Yk

∣∣Yk−1
1 ,Sk1

)
− h
(
Yk

∣∣Yk−1
1 , Xk

1 ,S
k
1 ,M

)
(324)

= h
(
Yk

∣∣Yk−1
1 ,Sk1

)
− h
(
Yk

∣∣Yk−1
1 , Xk

1 ,S
k
1

)
(325)

= I
(
Xk

1 ;Yk

∣∣Yk−1
1 ,Sk1

)
(326)

= I
(
Xk

1 ;Yk

∣∣Yk−1
1 ,Sk1 ,F

k
1

)
(327)

= I
(
Xk

1 ,Y
k−1
1 ;Yk

∣∣Sk1 ,Fk1)− I(Yk−1
1 ;Yk

∣∣Sk1 ,Fk1) (328)

≤ I
(
Xk

1 ,Y
k−1
1 ,Hk−1

1 ;Yk

∣∣Sk1 ,Fk1) (329)

= I
(
Xk,H

k−1
1 ;Yk

∣∣Sk1 ,Fk1)
+ I
(
Xk−1

1 ,Yk−1
1 ;Yk

∣∣Xk,H
k−1
1 ,Sk1 ,F

k
1

)
(330)
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Fig. 10. The causally relevant subgraph of (303) showing the independence
of Yk and

(
Xk−1

1 ,Yk−1
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)
when conditioned on

(
Xk,H
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1 ,Sk1 ,F

k
1

)
.
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Fig. 11. The causally relevant subgraph of (303) showing the independence
of Xk and Hk when conditioned on

(
Hk−1

1 ,Sk1 ,F
k
1

)
.

= I
(
Xk,H

k−1
1 ;Yk

∣∣Sk1 ,Fk1) (331)

≤ I
(
Xk,H

k−1
1 ;Yk,Hk

∣∣Sk1 ,Fk1) (332)

= I
(
Hk−1

1 ;Hk

∣∣Sk1 ,Fk1)+ I
(
Xk;Hk

∣∣Hk−1
1 ,Sk1 ,F

k
1

)
+ I
(
Xk;Yk

∣∣Hk,S
k
1 ,F

k
1

)
+ I
(
Hk−1

1 ;Yk

∣∣Hk, Xk,S
k
1 ,F

k
1

)
(333)

= I
(
Hk−1

1 ;Hk

∣∣Sk1 ,Fk1)+ I
(
Xk;Yk

∣∣Hk,S
k
1 ,F

k
1

)
(334)

where in (324) equality holds because Xk
1 is a function of

the message M , the feedback (Yk−1
1 ,Sk−1

1 ) and the side-
information Sk; where in (327) we introduce the feedback
Fk1 ,

(
Yk−1

1 ,Sk−1
1

)
; and where (325), (331), and (334)

are proven in Appendix A (see Figs. 9, 10, 11, and 12,
respectively).

Combining (334), and (322), and (316) now yields

I
(
M ;Yk,Sk

∣∣Yk−1
1 ,Sk−1

1

)
≤ I
(
Hk−1

1 ;Sk
∣∣Sk−1

1

)
+ I
(
Hk−1

1 ;Hk

∣∣Sk1 ,Fk1)
+ I
(
Xk;Yk

∣∣Hk,S
k
1 ,F

k
1

)
(335)

where we continue to bound the first two terms as follows:

I
(
Hk−1

1 ;Sk
∣∣Sk−1

1

)
+ I
(
Hk−1

1 ;Hk

∣∣Sk1 ,Fk1)
= I
(
Hk−1

1 ;Sk
∣∣Sk−1

1

)
+ h
(
Hk

∣∣Sk1 ,Fk1)
− h
(
Hk

∣∣Hk−1
1 ,Sk1 ,F

k
1

)
(336)

≤ I
(
Hk−1

1 ;Sk
∣∣Sk−1

1

)
+ h
(
Hk

∣∣Sk1)
− h
(
Hk

∣∣Hk−1
1 ,Sk1 ,F

k
1

)
(337)

= I
(
Hk−1

1 ;Sk
∣∣Sk−1

1

)
+ h
(
Hk

∣∣Sk1)
− h
(
Hk

∣∣Hk−1
1 ,Sk1

)
(338)
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Fig. 12. The causally relevant subgraph of (303) showing the independence
of Yk and Hk−1

1 when conditioned on
(
Xk,Hk,S

k
1 ,F

k
1

)
.
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Fig. 13. The causally relevant subgraph of (303) showing the independence
of Hk and Fk1 when conditioned on

(
Hk−1

1 ,Sk1
)
.

= I
(
Hk−1

1 ;Sk
∣∣Sk−1

1

)
+ I
(
Hk−1

1 ;Hk

∣∣Sk1) (339)

= I
(
Hk−1

1 ;Hk,Sk
∣∣Sk−1

1

)
(340)

≤ I
(
Hk−1

1 ,Sk−1
1 ;Hk,Sk

)
(341)

where (338) is proven in Appendix A (see Fig. 13).
The third term in (335) is bounded as follows:

I
(
Xk;Yk

∣∣Hk,S
k
1 ,F

k
1

)
= h

(
Yk

∣∣Hk,S
k
1 ,F

k
1

)
− h
(
Yk

∣∣Xk,Hk,S
k
1 ,F

k
1

)
(342)

= h
(
Yk

∣∣Hk,S
k
1 ,F

k
1

)
− h(Zk) (343)

≤ E

[
sup

X : E[|X|2]≤Ek
h(HkX + Zk|Hk = hk)

]
− h(Zk) (344)

= E
[
log
(

(πe)nR det
(
HkH

†
kEk + σ2I

))]
− nR log

(
πeσ2

)
(345)

≤ E

[
log

nR∏
`=1

(∣∣H(`)
k

∣∣2Ek + σ2
)]
− nR log σ2 (346)

= E

[
nR

1

nR

nR∑
`=1

log

(
1 +

∣∣H(`)
k

∣∣2 Ek
σ2

)]
(347)

≤ E
[
nR log

(
1 +

1

nR
‖Hk‖2

Ek
σ2

)]
(348)

≤ nR log

(
1 +

1

nR
E
[
‖Hk‖2

] Ek
σ2

)
. (349)
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Here, in (344) we take the supremum over all input distri-
butions with given second moment Ek, which is achieved
by a Gaussian distribution; (346) follows from Hadamard’s
inequality [22]; and (348) and (349) follow from Jensen’s
inequality. Since E

[
‖Hk‖2

]
= E

[
‖H0‖2

]
, this completes the

proof.

APPENDIX D
DERIVATION OF δ2(ξmin, κ) AND δ3(ξmin, κ)

We first show that

βk I
(
Zk−1
k−κ;Yk

∣∣Yk−1
k−κ,S

k
1 ,V

)
≤ δ2(ξmin, κ) + Hb(βk) (350)

where

lim
ξmin↑∞

δ2(ξmin, κ) = 0. (351)

To that goal, we bound as follows:

βk I
(
Zk−1
k−κ;Yk

∣∣Yk−1
k−κ,S

k
1 ,V

)
= βk h

(
Zk−1
k−κ

∣∣Yk−1
k−κ,S

k
1 ,V

)
− βk h

(
Zk−1
k−κ

∣∣Yk
k−κ,S

k
1 ,V

)
(352)

≤ βk h
(
Zk−1
k−κ

∣∣V)
− βk h

(
Zk−1
k−κ

∣∣Yk
k−κ, X

k
k−κ,Zk,H

k−κ−1
1 ,Sk1 ,V

)
(353)

= βk h
(
Zk−1
k−κ

∣∣V)− βkEXkk−κ
[
h
(
Zk−1
k−κ

∣∣Yk
k−κ,

{X` = x`}k`=k−κ,Zk,Hk−κ−1
1 ,Sk1 ,V

)]
(354)

= βk h
(
Zk−1
k−κ

∣∣V)
− βkEXkk−κ

[
h

(
Zk−1
k−κ

∣∣∣∣∣
{
H` +

Z`
X`

}k−1

`=k−κ
,Hk,

Hk−κ−1
1 ,Sk1 ,V

)]
(355)

≤ βk h
(
Zk−1
k−κ

∣∣V)
− βk inf

x` : |x`|≥ξmin
`=k−κ,...,k

h

(
Zk−1
k−κ

∣∣∣∣∣
{
H` +

Z`
x`

}k−1

`=k−κ
,Hk,

Hk−κ−1
1 ,Sk1 ,V

)
(356)

= βk h
(
Zk−1
k−κ

∣∣V)− βk h(Zk−1
k−κ

∣∣∣∣∣
{
H` +

Z`
ξmin

}k−1

`=k−κ
,

Hk,H
k−κ−1
1 ,Sk1 ,V

)
(357)

= βk I

(
Zk−1
k−κ;

{
H` +

Z`
ξmin

}k−1

`=k−κ
,Hk,H

k−κ−1
1 ,Sk1

∣∣∣∣∣V
)

(358)

≤ βk I

(
Zk−1
k−κ;

{
H` +

Z`
ξmin

}k−1

`=k−κ
,Hk,H

k−κ−1
1 ,

Sk1

∣∣∣∣∣Ak = 0, Bk = 1

)

+ (1− βk) I

(
Zk−1
k−κ;

{
H` +

Z`
ξmin

}k−1

`=k−κ
,Hk,

Hk−κ−1
1 ,Sk1

∣∣∣∣∣Ak = 0, Bk = 0

)
(359)

= I

(
Zk−1
k−κ;

{
H` +

Z`
ξmin

}k−1

`=k−κ
,Hk,

Hk−κ−1
1 ,Sk1

∣∣∣∣∣Ak = 0, Bk

)
(360)

≤ I

(
Zk−1
k−κ;

{
H` +

Z`
ξmin

}k−1

`=k−κ
,Hk,

Hk−κ−1
1 ,Sk1 , Bk

∣∣∣∣∣Ak = 0

)
(361)

= I

(
Zk−1
k−κ;

{
H` +

Z`
ξmin

}k−1

`=k−κ
,Hk,H

k−κ−1
1 ,

Sk1

∣∣∣∣∣Ak = 0

)

+ I

(
Zk−1
k−κ;Bk

∣∣∣∣∣
{
H` +

Z`
ξmin

}k−1

`=k−κ
,Hk,

Hk−κ−1
1 ,Sk1 , Ak = 0

)
(362)

≤ I

(
Zk−1
k−κ;

{
H` +

Z`
ξmin

}k−1

`=k−κ
,Hk,H

k−κ−1
1 ,

Sk1

∣∣∣∣∣Ak = 0

)
+ H(Bk|Ak = 0) (363)

= I

({
Z`
ξmin

}−1

`=−κ
;

{
H` +

Z`
ξmin

}−1

`=−κ
,H0,

H−κ−1
−k+1 ,S

0
−k+1

∣∣∣∣∣A0 = 0

)
+ Hb(βk) (364)

≤ lim
j↑∞

I

({
Z`
ξmin

}−1

`=−κ
;

{
H` +

Z`
ξmin

}−1

`=−κ
,H0,

H−κ−1
−j ,S0

−j

∣∣∣∣∣A0 = 0

)
+ Hb(βk) (365)

= lim
j↑∞

I

({
Z`
ξmin

}−1

`=−κ
;

{
H` +

Z`
ξmin

}−1

`=−κ

∣∣∣∣∣H0,

H−κ−1
−j ,S0

−j , A0 = 0

)
+ Hb(βk) (366)

= lim
j↑∞

h

({
H` +

Z`
ξmin

}−1

`=−κ

∣∣∣∣∣H0,H
−κ−1
−j ,S0

−j , A0 = 0

)
− h
(
H−1
−κ
∣∣H0,H

−κ−1
−∞ ,S0

−∞, A0 = 0
)

+ Hb(βk) (367)

, δ2(ξmin, κ) + Hb(βk). (368)

Here, in (353) we add and remove conditioning random
variables to differential entropy; (355) holds because condi-
tional on

(
Y kk−κ,H

k−κ−1
1

)
the input is independent of Zk−1

k−κ;
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(359) follows by adding a nonnegative term; (361) follows
by moving Bk from the conditioning argument to a main
argument of the mutual information; in (363) we drop any
negative term and use conditioning that reduces entropy; in the
subsequent equality (364) we use stationarity; then in (365) we
add more arguments; and (366) follows from the independence
of {Hk,Sk} and {Zk}.

Note that (351) holds because

lim
ξmin↑∞

lim
j↑∞

h

({
H` +

Z`
ξmin

}−1

`=−κ

∣∣∣∣∣H0,H
−κ−1
−j ,S0

−j , A0 = 0

)

= lim
j↑∞

lim
ξmin↑∞

h

({
H` +

Z`
ξmin

}−1

`=−κ

∣∣∣∣∣H0,H
−κ−1
−j ,

S0
−j , A0 = 0

)
(369)

= lim
j↑∞

h
(
H−1
−κ
∣∣H0,H

−κ−1
−j ,S0

−j , A0 = 0
)

(370)

= h
(
H−1
−κ
∣∣H0,H

−κ−1
−∞ ,S0

−∞, A0 = 0
)
. (371)

Here, the exchange of the limits in (369) follows from [23,
Theorem 7.11] (note that the differential entropy term is mono-
tonically decreasing in j and bounded, i.e., it is uniformly
converging), and (370) follows from a conditional version of
[6, Lemma 6.11].

In a quite similar fashion, we next show that

βk I
(
Yk−1
k−κ,Z

k−1
k−κ;Zk

∣∣Yk,S
k
1 ,V

)
≤ δ3(ξmin, κ) + Hb(βk) (372)

where

lim
ξmin↑∞

δ3(ξmin, κ) = 0. (373)

We have

βk I
(
Yk−1
k−κ,Z

k−1
k−κ;Zk

∣∣Yk,S
k
1 ,V

)
= βk h

(
Zk
∣∣Yk,S

k
1 ,V

)
− βk h

(
Zk
∣∣Yk

k−κ,Z
k−1
k−κ,S

k
1 ,V

)
(374)

≤ βk h(Zk|V)

− βk h
(
Zk
∣∣Yk

k−κ, X
k
k−κ,Z

k−1
k−κ,H

k−κ−1
1 ,Sk1 ,V

)
(375)

= βk h(Zk|V)

− βkEXkk−κ
[
h
(
Zk
∣∣Yk

k−κ, {X` = x`}k`=k−κ,Zk−1
k−κ,

Hk−κ−1
1 ,Sk1 ,V

)]
(376)

= βk h(Zk|V)

− βk EXkk−κ

[
h

(
Zk

∣∣∣∣Hk−1
k−κ,Hk +

Zk
Xk

,Hk−κ−1
1 ,Sk1 ,V

)]
(377)

≤ βk h(Zk|V)

− βk inf
x` : |x`|≥ξmin
`=k−κ,...,k

h

(
Zk

∣∣∣∣Hk +
Zk
xk
,Hk−1

1 ,Sk1 ,V
)

(378)

= βk h(Zk|V)− βk h
(
Zk

∣∣∣∣Hk +
Zk
ξmin

,Hk−1
1 ,Sk1 ,V

)
(379)

= βk I

(
Zk;Hk +

Zk
ξmin

,Hk−1
1 ,Sk1

∣∣∣∣V) (380)

≤ βk I
(
Zk;Hk +

Zk
ξmin

,Hk−1
1 ,Sk1

∣∣∣∣Ak = 0, Bk = 1

)
+ (1− βk) I

(
Zk;Hk +

Zk
ξmin

,Hk−1
1 ,Sk1

∣∣∣∣Ak = 0,

Bk = 0

)
(381)

= I

(
Zk;Hk +

Zk
ξmin

,Hk−1
1 ,Sk1

∣∣∣∣Ak = 0, Bk

)
(382)

≤ I
(
Zk;Hk +

Zk
ξmin

,Hk−1
1 ,Sk1 , Bk

∣∣∣∣Ak = 0

)
(383)

≤ I
(
Zk;Hk +

Zk
ξmin

,Hk−1
1 ,Sk1

∣∣∣∣Ak = 0

)
+ Hb(βk) (384)

= I

(
Z0

ξmin
;H0 +

Z0

ξmin
,H−1
−k+1,S

0
−k+1

∣∣∣∣A0 = 0

)
+Hb(βk) (385)

≤ lim
j↑∞

I

(
Z0

ξmin
;H0 +

Z0

ξmin
,H−1
−j ,S

0
−j

∣∣∣∣A0 = 0

)
+Hb(βk) (386)

= lim
j↑∞

I

(
Z0

ξmin
;H0 +

Z0

ξmin

∣∣∣∣H−1
−j ,S

0
−j , A0 = 0

)
+Hb(βk) (387)

= lim
j↑∞

h

(
H0 +

Z0

ξmin

∣∣∣∣H−1
−j ,S

0
−j , A0 = 0

)
− h
(
H0

∣∣H−1
−∞,S

0
−∞, A0 = 0

)
+ Hb(βk) (388)

, δ3(ξmin, κ) + Hb(βk). (389)

Analogously to (369)–(371), one argues that

lim
ξmin↑∞

lim
j↑∞

h

(
H0 +

Z0

ξmin

∣∣∣∣H−1
−j ,S

0
−j , A0 = 0

)
= h

(
H0

∣∣H−1
−∞,S

0
−∞, A0 = 0

)
. (390)

APPENDIX E
DERIVATION OF BOUND (213)

Similarly to (331)–(334), we bound as follows:

I
(
Xk,H

k−1
1 ;Yk

∣∣Sk1 , Ak = 0, Bk = 0
)

≤ I
(
Xk,H

k−1
1 ;Yk,Hk

∣∣Sk1 , Ak = 0, Bk = 0
)

(391)

= I
(
Hk−1

1 ;Hk

∣∣Sk1 , Ak = 0, Bk = 0
)

+ I
(
Xk;Hk

∣∣Hk−1
1 ,Sk1 , Ak = 0, Bk = 0

)
+ I
(
Xk;Yk

∣∣Hk,S
k
1 , Ak = 0, Bk = 0

)
+ I
(
Hk−1

1 ;Yk

∣∣Hk, Xk,S
k
1 , Ak = 0, Bk = 0

)
(392)

= I
(
Hk−1

1 ;Hk

∣∣Sk1 , Ak = 0, Bk = 0
)

+ I
(
Xk;Yk

∣∣Hk,S
k
1 , Ak = 0, Bk = 0

)
(393)

where the last equality can be seen from Appendix A (see
Figs. 5 and 6). Moreover, similarly to (342)–(349) we bound
the second term in (393) as follows:

I
(
Xk;Yk

∣∣Hk,S
k
1 , Ak = 0, Bk = 0

)
= h

(
Yk

∣∣Hk,S
k
1 , Ak = 0, Bk = 0

)
− h
(
Yk

∣∣Xk,Hk,S
k
1 , Ak = 0, Bk = 0

)
(394)

= h
(
Yk

∣∣Hk,S
k
1 , Ak = 0, Bk = 0

)
− h(Zk) (395)
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≤ E
[

sup
X : E[|X|2]≤ξ2

min

h(HkX + Zk|Hk = hk, Ak = 0,

Bk = 0)

∣∣∣∣Ak = 0, Bk = 0

]
− h(Zk) (396)

= E
[
log
(

(πe)nR det
(
HkH

†
kξ

2
min + σ2I

))∣∣∣Ak = 0, Bk = 0
]

− nR log
(
πeσ2

)
(397)

≤ E

[
log

nR∏
`=1

(∣∣H(`)
k

∣∣2ξ2
min + σ2

)∣∣∣∣∣Ak = 0, Bk = 0

]
− nR log σ2 (398)

= E

[
nR

1

nR

nR∑
`=1

log

(
1 +

∣∣H(`)
k

∣∣2 ξ2
min

σ2

)∣∣∣∣∣Ak = 0, Bk = 0

]
(399)

≤ E
[
nR log

(
1 +

1

nR
‖Hk‖2

ξ2
min

σ2

)∣∣∣∣Ak = 0, Bk = 0

]
(400)

≤ nR log

(
1 +

1

nR
E
[
‖Hk‖2

∣∣Ak = 0, Bk = 0
] ξ2

min

σ2

)
(401)

≤ nR log

(
1 +

2ξ2
min

nRσ2

E
[
‖Hk‖2

]
1− βk

)
(402)

where the last inequality follows from Lemma 9 and (206).
Thus,

I
(
Xk,H

k−1
1 ;Yk

∣∣Sk1 , Ak = 0, Bk = 0
)

≤ h
(
Hk

∣∣Sk1 , Ak = 0, Bk = 0
)

− h
(
Hk

∣∣Hk−1
1 ,Sk1 , Ak = 0, Bk = 0

)
+ nR log

(
1 +

2ξ2
min

nRσ2

E
[
‖Hk‖2

]
1− βk

)
. (403)

Next,

−hλ
(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,S
k
1 , Ak = 0, Bk = 0

)
≤ −hλ

(
Ĥk e

iΘk
∣∣∣Hk−1

1 ,
{
Ĥ` e

iΘ`
}k−1

`=k−κ,S
k
1 ,

Ak = 0, Bk = 0
)

(404)

= −hλ
(
Ĥk e

iΘk
∣∣∣Hk−1

1 ,Sk1 , Ak = 0
)

(405)

where we use that conditional on
(
Hk−1

1 ,Sk1
)
, Hk is indepen-

dent of the input (use Fig. 6 in Appendix A to see that Xk
1 is

independent of Hk, when conditioned on
(
Hk−1

1 ,Sk1
)
).

The bounding of the last term on the right-hand side of
(213) is more elaborate. Note that the following derivation
can be extended to a more general setup (compare with [6,
Section 6]). We use the shorthand

V̄ , {Ak = 0, Bk = 0} (406)

and compute (using again I {·} as the indicator function)

−nR E
[
log ‖Hk‖2

∣∣V̄]
= −2nRE

[
log ‖Hk‖ ·I {‖Hk‖ ≤ 1}

+ log ‖Hk‖ ·I {‖Hk‖ > 1}︸ ︷︷ ︸
≥ 0

∣∣∣V̄] (407)

≤ −2nR E
[
log ‖Hk‖ ·I {‖Hk‖ ≤ 1}

∣∣∣V̄] (408)

= 2nR E
[
log
(
‖Hk‖−1

)
·I {‖Hk‖ ≤ 1}

∣∣∣V̄] (409)

= 2nR

∫
‖h‖≤1

fHk|V̄(h) log
(
‖h‖−1

)
dh (410)

= 2nR

∫
‖h‖≤1

fHk|V̄
(h)≤‖h‖−1/2

fHk|V̄(h) log
(
‖h‖−1

)
dh

︸ ︷︷ ︸
, I1

+ 2nR

∫
‖h‖≤1

fHk|V̄
(h)>‖h‖−1/2

fHk|V̄(h) log
(
‖h‖−1

)
dh

︸ ︷︷ ︸
, I2

.

(411)

The two integrals are now bounded separately. Using the
surface area of the nR-dimensional complex unit-sphere 2πnR

Γ(nR)
and the standard relation between the PDF of Hk and the PDF
of ‖Hk‖, we obtain

I1 =

∫
‖h‖≤1

fHk|V̄
(h)≤‖h‖−1/2

fHk|V̄(h) log
(
‖h‖−1

)︸ ︷︷ ︸
≥ 0

dh (412)

≤
∫
‖h‖≤1

‖h‖− 1
2 log

(
‖h‖−1

)
dh (413)

=
2πnR

Γ(nR)

∫
r≤1

r2nR− 3
2 log(r−1) dr (414)

=
8πnR

Γ(nR)(4nR − 1)2
. (415)

The second integral can be bounded as follows:

I2 = 2

∫
‖h‖−1/2≥1

fHk|V̄
(h)>‖h‖−1/2

fHk|V̄(h) log
(
‖h‖− 1

2

)
dh (416)

≤ 2

∫
‖h‖−1/2≥1

fHk|V̄
(h)>‖h‖−1/2

fHk|V̄(h) log fHk|V̄(h) dh (417)

≤ 2

∫
fHk|V̄

(h)>1

fHk|V̄(h) log fHk|V̄(h) dh (418)

, 2h−(Hk|V̄). (419)

Here the last step should be read as definition of h−(Hk|V̄).
We have

h−(Hk|V̄) = h+(Hk|V̄)− h(Hk|V̄) (420)

where

h+(Hk|V̄)

,
∫

0<fHk|V̄
(h)<1

fHk|V̄(h) log
1

fHk|V̄(h)
dh (421)

= p+

∫
0<fHk|V̄

(h)<1

fHk|V̄(h)

p+
log

1

fHk|V̄(h)/p+
dh

− p+ log p+ (422)

with

p+ , Pr
[
0 < fHk|V̄(Hk) < 1

]
. (423)

Note that the first term in (422) is a differential entropy of
a PDF on the set {h : 0 < fHk|V̄(h) < 1}. We now bound
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this differential entropy by a standard bound on differential
entropy for a given second moment:

h(U) ≤ nR log

(
πe

nR
E
[
‖U‖2

])
(424)

(compare (343)–(349)). With∫
0<fHk|V̄

(h)<1

‖h‖2
fHk|V̄(h)

p+
dh

≤ 1

p+

∫
CnR

‖h‖2 fHk|V̄(h) dh (425)

=
1

p+
E
[
‖Hk‖2

∣∣V̄] (426)

we hence obtain

h+(Hk|V̄)

≤ p+nR log

(
πe

nR p+
E
[
‖Hk‖2

∣∣V̄])− p+ log p+ (427)

= p+nR log

(
πe

nR
E
[
‖Hk‖2

∣∣V̄])− (nR + 1)p+ log p+ (428)

≤ p+nR log

(
1 +

πe

nR
E
[
‖Hk‖2

∣∣V̄])+ (nR + 1)
1

e
(429)

≤ nR log

(
1 +

πe

nR
E
[
‖Hk‖2

∣∣V̄])+
nR + 1

e
. (430)

Combining (411), (415), (419), (420), and (430) now yields

−nR E
[
log ‖Hk‖2

∣∣V̄]
≤ 16nRπ

nR

Γ(nR)(4nR − 1)2
+ 4n2

R log

(
1 +

πe

nR
E
[
‖Hk‖2

∣∣V̄])
+

4nR(nR + 1)

e
− 4nRh(Hk|V̄) (431)

≤ 16nRπ
nR

Γ(nR)(4nR − 1)2
+ 4n2

R log

(
1 +

2πe

nR

E
[
‖Hk‖2

]
1− βk

)

+
4nR(nR + 1)

e
− 4nRh

(
Hk

∣∣Sk1 , V̄) (432)

where in the last step we have again made use of Lemma 9
and of (206), and we conditioned the last term on Sk1 .

From (403), (405), and (432) we now obtain

I
(
Xk,H

k−1
1 ;Yk

∣∣Sk1 , Ak = 0, Bk = 0
)

− hλ
(
Ĥk e

iΘk
∣∣∣{Ĥ` e

iΘ`
}k−1

`=k−κ,S
k
1 , Ak = 0, Bk = 0

)
− nR E

[
log ‖Hk‖2

∣∣Ak = 0, Bk = 0
]

≤ −(4nR − 1) h
(
Hk

∣∣Sk1 , Ak = 0, Bk = 0
)

− h
(
Hk

∣∣Hk−1
1 ,Sk1 , Ak = 0, Bk = 0

)
+ nR log

(
1 +

2ξ2
min

nRσ2

E
[
‖Hk‖2

]
1− βk

)
− hλ

(
Ĥk e

iΘk
∣∣∣Hk−1

1 ,Sk1 , Ak = 0
)

+
16nRπ

nR

Γ(nR)(4nR − 1)2

+ 4n2
R log

(
1 +

2πe

nR

E
[
‖Hk‖2

]
1− βk

)
+

4nR(nR + 1)

e
(433)

≤ −4nR h
(
Hk

∣∣Hk−1
1 ,Sk1 , Ak = 0, Bk = 0

)
+

4nR(nR + 1)

e
− hλ

(
Ĥk e

iΘk
∣∣Hk−1

1 ,Sk1 , Ak = 0
)

+
16nRπ

nR

Γ(nR)(4nR − 1)2
+ nR log

(
1 +

2ξ2
min

nRσ2

E
[
‖Hk‖2

]
1− βk

)

+ 4n2
R log

(
1 +

2πe

nR

E
[
‖Hk‖2

]
1− βk

)
(434)

≤ −4nR h
(
H0

∣∣H−1
−∞,S

0
−∞, A0 = 0

)
+

4nR(nR + 1)

e

− hλ
(
Ĥ0 e

iΘ0
∣∣H−1
−∞,S

0
−∞, A0 = 0

)
+

16nRπ
nR

Γ(nR)(4nR − 1)2
+ nR log

(
1 +

2ξ2
min

nRσ2

E
[
‖H0‖2

]
1− βk

)

+ 4n2
R log

(
1 +

2πe

nR

E
[
‖H0‖2

]
1− βk

)
. (435)

Here, in (434), we add more conditioning; and in the last in-
equality (435) we use the fact that conditional on

(
Hk−1

1 ,Sk1
)
,

Hk is independent of the input (use Fig. 6 in Appendix A
to see that Xk

1 is independent of Hk when conditioned on(
Hk−1

1 ,Sk1
)
), and then rely on stationarity and add some more

additional conditioning.
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